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Abstract
Averaged bound-waves, arising from the interaction of a stormy-seawith amarginal swell, are used as an initial inhomogeneous
disturbance which, as a result of an instability inherent in narrow homogeneous JONSWAP spectra, is amplified exponentially.
This drives the system away from the equilibrium. Finally, by looking into the statistics of the underlying sea state we find
that, throughout the non linear long time evolution, there is an increase in the probability of freak wave occurrence.

Keywords Freak-waves · C.S.Y. equation · Inhomogeneous random waves · Bound-waves

1 Introduction

In this article, we propose a mechanism for the generation of
freak waves in a sea state consisting of a local wind sea and
a swell.

This mechanism is probabilistic in nature, i.e. it does not
show how a freak wave would emerge out of a single real-
ization of the surface elevation in combination with swell.
Rather, it shows that throughout the non linear, long time
evolution of the sea state, treated as a Gaussian process, the
probability of extreme waves is increased considerably.

Dealing with non-linear random inhomogeneous waves is
the crux of the matter.

In the context of deep water waves, there are currently two
equations at hand. We have the Alber equation, see Alber
(1978), and the equation derived by Crawford, Saffman and
Yuen, seeCrawford et al. (1980), that we call theC.S.Y. equa-
tion. The main difference is that Alber’s equation is a narrow
banded model whereas the C.S.Y. is not. Actually, Alber’s
equation can be derived directly from the C.S.Y. equation,
see Crawford et al. (1980).

We choose the C.S.Y. equation as the model for non linear
evolution of random inhomogeneous waves.

B David Andrade
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There are two steps needed for the mechanism to gener-
ate freak waves. First, one must find the instability generator
of the underlying wave spectrum. This means considering
a special inhomogeneous perturbation of a homogeneous
spectrum, defined in terms of a wave number and some fre-
quencies. Whenever any of such frequencies have a non-zero
imaginary part, the wave vector of the disturbance destabi-
lizes the spectrum. The set of all such unstable wave vectors
act as the instability generator of the spectrum.

Here is where the swell enters the picture. It turns out
that, by taking two-wave vector correlations, between the
bound-waves (arising from the sea and the swell) and the free
waves of the sea, oneobtains a similar typeof inhomogeneous
perturbation required as a generator of instability. The wave
vector of the disturbance is the wave vector of the swell.

In case of a destabilizing swell, the next step is to compute
the non linear, long time evolution of the spectrum. This is
achieved by using a discretized version of theC.S.Y. equation
as was done in Andrade and Stiassnie (2020). We look at the
evolution of thewave spectrum, as it reveals energy exchange
among the waves, and the variance of the free surface ele-
vation, which shows how the average wave energy spreads
across the space-time domain. Then following Regev et al.
(2008), we use the time evolution of the variance to find
increases in the probability of freak-wave occurrence.

It should be noted that it is already an established fact that
it is likely to encounter freak-waves during the evolution of
inhomogeneous wave fields. See Regev et al. (2008) or Ribal
et al. (2013), for results obtained from Alber’s equation. See
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Stuhlmeier and Stiassnie (2019) and Andrade and Stiassnie
(2020) for results based on the C.S.Y. equation.

Despite this, the main point of the current paper is to show
one physical mechanism capable of triggering the increase
in the freak-wave probability, thus the generation of freak-
waves, namely the bound-waves arising from the interaction
between the local sea and a swell.

The idea of using bound-waves as an inhomogeneous
disturbance of a homogeneous spectrum was originally
investigated in Regev et al. (2008). They used Alber’s equa-
tion to establish their results. One of the novelties of this
paper is that it uses the more general, broad-banded C.S.Y.
equation.

2 Deterministic model: the Zakharov
equation

In this article, we consider the non-linear, long time evolution
of deep-water waves governed by the Zakharov equation:

∂

∂t
B0 = −i

∫∫∫
T0,1,2,3 B

∗
1 B2B3 δ

2,3
0,1 e

i�2,3
0,1t dk1,2,3. (1)

Here subscripts denote a wave vector, so B0 = B(k0), etc.
The kernel T0,1,2,3 can be found in Krasitskii (1994) andMei
et al. (2018). The asterisk * denotes complex conjugation and
unless explicitly stated the integration limits are from−∞ to
∞. We use the deep water dispersion relation ω0 = √

gk0,
where g is the gravity acceleration and k0 = ‖k0‖.

In this context, one calls the complex-valued function B
the free-wave amplitude spectrum. |B|2 is the wave action
(energy/frequency) spectrum.

The Zakharov equation governs the energy exchange
among the wave components due to resonant and quasi-
resonant four-wave interactions. This is incorporated in the
Dirac delta function δ

2,3
0,1 = δ(k0 + k1 − k2 − k3), together

with the frequency detuning �
2,3
0,1 = ω0 + ω1 − ω2 − ω3,

which marks the departure from exact resonance.
The free-wave spectrum B is the leading order approxi-

mation of the more general amplitude spectrum b. Actually,
throughout the derivation of the Zakharov equation one uses
the following expansion of the amplitude spectrum into free-
waves and bound-waves

b(k, t) = [
B(k, t) + B ′(k, t) + · · · ] e−iωt . (2)

Let ε be a typical steepness of the wave field. Then the free-
waves B = O(ε) and the bound-waves B ′ = O(ε2). The
full expansion of the amplitude spectrum b also includes
higher order bound-waves such as B

′′ = O(ε3), see Mei
et al. (2018). In this article, we only consider the leading
bound-wave spectrum B ′.

It turns out that the bound-waves are determined by the
free waves. Specifically, one has the following equation for
B ′ in terms of B:

B ′
0 = −

∫∫ V (1)
0,1,2

ω0 − ω1 − ω2
B1B2 e

i(ω0−ω1−ω2)tδ0−1−2 dk1,2

−
∫∫ V (2)

0,1,2

ω0 + ω1 − ω2
B∗
1 B2 e

i(ω0+ω1−ω2)tδ0+1−2 dk1,2

−
∫∫ V (3)

0,1,2

ω0 + ω1 + ω2
B∗
1 B

∗
2 e

i(ω0+ω1+ω2)tδ0+1+2 dk1,2.

(3)

All the kernels can be found in Mei et al. (2018).
Note that the Zakharov equation is a deterministic model;

predictions can only be made provided that one is given
some initial conditions. In some applications obtaining exact
initial conditions is not feasible, as it would require exact
knowledge of the ocean surface elevation, and its speed, at a
specific instant. Therefore in order to make predictions out
of Zakharov’s equation we turn to its leading order stochastic
counterpart, the C.S.Y. equation.

3 Stochastic model: the C.S.Y. equation

Randomness is introduced into the system by letting the
free-wave amplitude spectrum to be a mean zero Gaussian
stochastic process.We use 〈·〉 to denote an ensemble average.

We shall be primarily concerned with the determination
of the second order moments of the process, which are the
values of the two-wave-vector spectral correlation function1

Ri j (t) = 〈B(ki , t)B∗(k j , t)〉. (4)

Directly from Zakharov equation and under the assumption
of strict Gaussianity, Crawford, Saffman and Yuen derived,
the following equation for R, known as the C.S.Y. equation,
see Crawford et al. (1980).

∂

∂t
Ri j = −2i

∫∫∫
Ti,m,n,pδ

n,p
i,m e

i�n,p
i,m t Rnj Rpm dkm,n,p

+ 2i
∫∫∫

Tj,m,n,pδ
n,p
j,me

−i�n,p
j,mt Rin Rmp dkm,n,p.

(5)

It is convenient to define

ri j = e−i(ωi−ω j )t Ri j , (6)

1 All correlations of the form 〈B(ki )B(k j )〉 are assumed to be zero.
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and rewrite equation (5) as

∂

∂t
ri j = −i

(
ωi − ω j

)
ri j

− 2i
∫∫∫

Ti,m,n,pδ
n,p
i,m rnjrpm dkm,n,p

+ 2i
∫∫∫

Tj,m,n,pδ
n,p
j,mrinrmp dkm,n,p.

(7)

3.1 Homogeneous solutions

There is an important class of solutions of the C.S.Y. equa-
tion which are called homogeneous solutions. Such solutions
have a correlation function of the form

Ri j = Ciδ(ki − k j ). (8)

By substituting (8) into Eq. (5) it can be shown that any
homogeneous solution is stationary. Note that in this case
R j j = r j j .

Given a wave k j , the value C j = 〈|Bj |2〉 is the average
wave action of the wave k j . Thus one refers to C j as the
wave action spectrum.

The fact that homogeneous solutions are stationary implies
that a non-trivial time evolution of a given (homogeneous)
wave action spectrum is only possible when there are inho-
mogeneous perturbations in the initial conditions.Hence, one
asks how unstable is a homogeneous spectrum to inhomoge-
neous disturbances? We turn to this matter next.

3.2 Linearized C.S.Y. equation

Given a homogeneous wave action spectrum C j one is inter-
ested in studying its instability to initial inhomogeneous
disturbances. To this end, one looks for short-time solutions
of the form

ri j (t) = Ciδ(ki − k j ) + r (1)
i j (t) + · · · . (9)

Upon substituting this expression into (7) and collecting the
linear terms in r (1)

i j , one gets the following linear equation

for r (1)
i j :

∂

∂t
r (1)
i j = −i

(
�i − � j

)
r (1)
i j

+ 2i(Ci − C j )

∫∫
Ti,m, j,n δ

j,n
i,m r (1)

nm dkn,m,

(10)

where the function � is

�0 = ω0 + 2
∫

T0,m,0,mCm dkm . (11)

Note that Eq. (10) is valid for every ki and k j . It is linear
since the values of the wave action spectrum C j are given.

When ki = k j , ∂r
(1)
j j /∂t = 0. We take r (1)

j j = 0 without any
loss of generality.

Equation (10) is the continuous version of equation (19)
studied in Andrade and Stiassnie (2020) in the discrete case.

Next, one introduces new variables by letting

m = (
ki + k j

)
/2. (12)

n = ki − k j . (13)

F(m,n, t) = r(m + n/2,m − n/2, t). (14)

In terms of F , Eq. (10) becomes

d

dt
F = −i (�(m + n/2) − �(m − n/2)) F

+ 2i(C(m + n/2) − C(m − n/2))

×
∫∫

T (m + n/2,u − v/2,m − n/2,u + v/2)

× δvn F(u, v) dudv.
(15)

Here, in the integral on the right-hand side of (10), we substi-
tuted the dummy variables of integration km and kn by new
variables u = (km + kn)/2 and v = kn − km .

Next one integrates the delta function on the right-hand
side of equation (15) obtaining

d

dt
F = −i (�(m + n/2) − �(m − n/2)) F

+ 2i(C(m + n/2) − C(m − n/2))

×
∫

T (m + n/2,u − n/2,m − n/2,u + n/2)

× F(u,n) du.

(16)

Note that Eq. (16) is equivalent to equation (10), since we
just changed variables.

The next step is to look for inhomogeneous solutions of
the form:

F(m,n, t) = eiλt M(m)δ(n − kL)

+ e−iλt M∗(m)δ(n + kL),
(17)

where M(m) is an arbitrary function, kL is an arbitrary wave
vector2 and λ is a constant.

This ansatz is based on a previous experience with the
discretized C.S.Y. equation. Note that, by reverting back

2 Later on when working with JONSWAP spectrum the wave vector
kL will be the wave vector of a ”long” wave, i.e., a swell; hence, the
subscript.
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to the wave vectors ki and k j , one can see that the sup-
port of F consists of wave vectors of the form ki −
k j = ±kL , or in the new variables, n = ±kL . This
property is shared with the eigenvalues of the linear dis-
cretized C.S.Y. equation studied in Andrade and Stiassnie
(2020).

Substituting (17) into (16) and collecting the terms that
have δ(n − kL) as a common factor yields

(λ + �(m + kL/2) − �(m − kL/2)) M(m)

= 2(C(m + kL/2) − C(m − kL/2))

×
∫

T (m + kL/2,u − kL/2,m

− kL/2,u + kL/2)M(u) du.

(18)

Equation (18) is a linear integral equation for M with λ

appearing as an unknown parameter. It admits non trivial
solutions (M 	= 0) depending on λ, which plays the role of
an eigenvalue of the system.

Moreover, the behavior of the linear solution (17) is also
determined by λ. It grows exponentially whenever Im[λ] 	=
0. Otherwise, it oscillates in time.

Note that there is no need to consider the terms with δ(n+
kL), as they yield the same Eq. (18).

Equation (18) is remarkably similar to the one obtained in
Badulin et al. (1995) for the instability problem of determin-
istic short-crested water waves to higher order harmonics.

One final remark concerning Eq. (18) is that, by tak-
ing its narrow-band approximation, as done in Crawford
et al. (1980), one obtains equation (4.10) in Alber (1978),
or equation (53) in Crawford et al. (1980). In this limit Eq.
(18) simplifies, it becomes an equation for λ independent
of M . This has been used as the starting point in several
investigations regarding the instability of a homogeneous
spectrum, see Stiassnie et al. (2008) and Ribal et al. (2013).
Recently, it was studied using of the Wigner transform and
the non-linear Schrödinger equation, see Athanassoulis et al.
(2017).

3.3 Solving equation (18)

Given a wave action spectrum C and a wave vector kL , our
goal is to find solutions of Eq. (18). This involves two tasks.
First, to determine all λ such that a non-zero solution exists;
then find the solutionM(m). All of this will be accomplished
in the special case of a discrete wave action spectrum.

The spectrum is discretized by fixing N wave vectors
k1, . . . ,kN , and replacing the continuous spectrum by a sum
of Dirac deltas:

C(k) =
N∑

n=1

Cnδ(k − kn). (19)

Likewise we use the following ansatz for M :

M(m) =
N∑
j=1

Mm
j δ(m − (k j − kL/2))

+
N∑
j=1

Mp
j δ(m − (k j + kL/2)).

(20)

The discrete counterpart of the integral equation (18) is
the following linear system of 2N equations for the 2N
unknowns Mm

1 , . . . , Mm
N and Mp

1 , . . . , Mp
N :

(λ + �(ki ) − �(ki − kL)) Mm
i

= 2Ci

N∑
j=1

Mm
j Ti, j−k,i−k, j + Mp

j Ti, j,i−k, j+k .
(21)

(λ + �(ki + kL) − �(ki )) M
p
i

= −2Ci

N∑
j=1

Mm
j Ti+k, j−k,i, j + Mp

j Ti+k, j,i, j+k .
(22)

In these equations, the index i runs from 1, . . . , N and the
subscript k stands for the wave vector kL thus, Ti, j−k,i−k, j =
T (ki ,k j − kL ,ki − kL ,k j ), etc.

All the technical details regarding the derivation of Eqs.
(21) and (22) from Eq. (18) are given in Appendix A.

Equations (21) and (22) admit non-trivial solutionswhenλ

is an eigenvalue of the system. There are at most 2N different
and possibly complex eigenvalues.

Once an eigenvalue is chosen, onemay solve (21) and (22)
for Mp

i and Mm
i and recover the function M(m) from Eq.

(20). Ultimately, by means of Eq. (17), one gets a solution of
the linear C.S.Y. equation.

Note that the behavior of the solution given by Eq. (17)
is determined by λ; it grows exponentially when Im[λ] 	= 0,
otherwise it oscillates in time. Hence one defines a growth
rate by

G = Im[λ], for λ an eigenvalue of (21) and (22). (23)

Given a spectrum C and a wave vector kL , we say that it
is unstable provided that the system (21) and (22) has at least
one growth rate.

In practice, it suffices to look for eigenvalues with posi-
tive imaginary part, since when λ is an eigenvalue, so is its
complex conjugate λ∗.
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4 Instability of JONSWAP spectrum

Nowwe apply the theoretical results obtained in the previous
section and study the instabilities of a sea state given by a
unidirectional JONSWAP spectrum.

The energy spectrum of the sea is given by

S(k) = α

2k3
exp

[
−5

4

(
k

kp

)−2
]

γ
exp

[
−

(√
k
kp

−1
)2

/2σ 2
]
,

(24)

where k = (k, 0). Moreover, we set the following parame-
ters: kp = 1 and σ = 0.08.

A typical steepness of the wave field is

ε = kp

√
2

∫
S(k) dk. (25)

The values of α, γ and ε used herein are given in Table 1.
These correspond to cases a and b investigated in Andrade
and Stiassnie (2020).

The energy spectrum is discretized as a sum of Dirac’s
delta functions:

S(k) =
N∑
j=1

S j δ(k − k j ), (26)

where the wave vectors k j = (k j , 0) are evenly spaced over
the interval [0, 4kp]. Let dk denote the spacing between con-
secutive wave numbers. In the following investigations we
use a total of N = 600 wave numbers for the spectrum of
the sea.

The initial wave action spectrum is

C j = 4gπ2dk

ω j
S j , (27)

as was used in Andrade and Stiassnie (2020).
In order to compute the growth rates we define a col-

umn vector [Mm
1 , . . . , Mm

N , Mp
1 , . . . , Mp

N ]T and rewrite the
system of Eqs. (21) and (22) in matrix form. Then we use
MATLAB’s eig routine to compute the eigenvalues of the
system and the growth rates.

For every wave vector kL , there are at most 1200 different
growth rates. However in order to test for the instability of the
spectrum only one positive growth rate is needed. Thus from
here on let G be the maximum growth rate. If G > 0 there is
instability. Otherwise the spectrum is stable with respect to
kL .

It is convenient to render all wave numbers and growth
rates dimensionless by means of

k̃L = kL
εkp

. (28)

G̃ = G

ε2ωp
. (29)

In Figs. 1 and 2, we plot the level lines G̃ as a function
of the components of the dimensionless wave vector k̃L =
(k̃Lx , k̃Ly ). In both cases the instability region is bounded by
a critical straight line that makes an angle of 25.64◦ with the
x-axis for case A and 27.47◦ for case B. Also one can see
that, the most unstable wave vector is along the x-axis.

Considering a wave vector with reflected components, i.e.
kL = (kLx ,−kLy ), the corresponding instability region is
flipped upside down;mirror reflection of Figs. 1 and 2.More-
over the system of Eqs. (21) and (22) is unchanged if one
replaces kL by −kL . This shows that the instability region
for−kL is also symmetrical with respect to the origin. These
regions are remarkably similar to those regions of instability
of a periodic wave train, in the deterministic case, shown in
Yuen and Lake (1982).

Table 1 Parameters of the
energy spectrum of the sea and
of the swell used in the
simulations

Cases Sea Swell Growth rate
α γ ε Hs aL kL G̃

Case A1 0.03 10 0.1787 0.5055 m 1 cm 0.0867 m−1 0.1206

Case A2 0.03 10 0.1787 0.5055 m 1 cm 0.1733 m−1 0.2231

Case A3 0.03 10 0.1787 0.5055 m 1 cm 0.34 m−1 0.3204

Case A4 0.03 10 0.1787 0.5055 m 1 mm 0.34 m−1 0.3204

Case A5 0.03 10 0.1787 0.5055 m 1 cm 0.5133 m−1 0.1685

Case B1 0.015 20 0.1597 0.4518 m 1 cm 0.08 m−1 0.1082

Case B2 0.015 20 0.1597 0.4518 m 1 cm 0.16 m−1 0.3521

Case B3 0.015 20 0.1597 0.4518 m 1 cm 0.32 m−1 0.3868

Case B4 0.015 20 0.1597 0.4518 m 1 mm 0.32 m−1 0.3868

Case B5 0.015 20 0.1597 0.4518 m 1 cm 0.48 m−1 0.1952

123

Author's personal copy



Journal of Ocean Engineering and Marine Energy

Fig. 1 Case A: instability
region of the JONSWAP
spectrum γ = 10 and α = 0.03.
The figure shows the level lines
of G̃ as a function of the
dimensionless wave vector
k̃L = (k̃Lx , k̃Ly ). The critical
line is at an angle of 25.64◦. The
circular lines show the values of
λL/λp = 0.5, 1, 2, 3, 4

The circular broken lines correspond to different values
of

λL

λp
= ε−1k̃L = c, (30)

whereλL andλp are thewavelengths of the longwavekL and
the peak wave kp, respectively. The values of the constant c
are 0.5, 1, 2, 3 and 4.

As a consistency check, we compared our growth rates,
obtained when kL is on the grid points used to discretize the
spectrum, against the values reported in Fig. 2b and Table
1 in Andrade and Stiassnie (2020). There was no noticeable
difference between both computations.

5 Long time evolution

In this section we study the non-linear, long-time evolution
of wave spectra. To this end, we compute numerical solutions
of the C.S.Y. equation.

Note that, in order to start the evolution, some initial con-
ditions are required, namely the initial wave action spectrum
together with an inhomogeneous disturbance.

The mechanism to generate the disturbance is through the
bound-waves between a local sea and a swell. We address
this next.

5.1 Bound-wave correlation

Let us go back to the Zakharov equation. Recall that there
is an amplitude spectrum b(k) which decomposes into the
free-wave spectrum B(k) and (to leading order) a bound-
wave spectrum B ′(k).

In order to model a local wind sea state and a swell, one
decomposes the free wave spectrum as the sum of a sea state
and a monochromatic swell:

B(k, t) = BL(t)δ(k − kL) + BS(k, t). (31)

From now on kL is the swell’s wave vector. We use the sub-
script “L” for long and “S” for short.

Substituting (31) into (3), at t = 0, yields:

B ′(k) = −BL
V (1)
k,kL ,k−kL

+ V (1)
k,k−kL ,kL

ω(k) − ω(kL ) − ω(k − kL )
BS(k − kL )

−
∫ V (1)

k,km ,k−km

ω(k) − ω(km) − ω(k − km)
BS(km)BS(k − km) dkm

− B∗
L

V (2)
k,kL ,k+kL

ω(k) + ω(kL ) − ω(k + kL )
BS(k + kL )

− BL
V (2)
k,kL−k,kL

ω(k) + ω(kL − k) − ω(kL )
B∗
S(kL − k)

−
∫ V (2)

k,km ,k+km

ω(k) + ω(km) − ω(k + km)
B∗
S(km)BS(k + km) dkm

− B∗
L

V (3)
k,kL ,−(k+kL ) + V (3)

k,−(k+kL ),kL

ω(k) + ω(kL ) + ω(k + kL )
B∗
S(−k − kL )

−
∫ V (3)

k,km ,−k−km

ω(k) + ω(km) + ω(k + km)
B∗
S(km)B∗

S(−k − km) dkm .

(32)

One introduces randomness in the system by letting the
free-waves of the sea be a homogeneous Gaussian stochastic
process with zero mean. Let 〈·〉 be an ensemble average. Let
us temporarily make the homogeneity assumption, so that:

〈BS(ki )B∗
S(k j )〉 = C jδ(ki − k j ). (33)

The zero mean assumption implies that 〈BS(k)B∗
L〉 = 0 for

every k, as BL is a deterministic quantity.
In view of the expansion of the complex amplitude (2),

it is readily seen that b itself is a stochastic process with
mean 〈b(k)〉 = BLδ(k−kL). Its two-wave-vector correlation
function is:

〈b(ki )b∗(k j )〉 = 〈B(ki )B∗(k j )〉
+ 〈B(ki )(B ′(k j ))

∗〉
+ 〈B ′(ki )B∗(k j )〉)
+ 〈B ′(ki )(B ′(k j ))

∗〉.

(34)

123

Author's personal copy



Journal of Ocean Engineering and Marine Energy

Fig. 2 Case B: instability region
of the JONSWAP spectrum
γ = 20 and α = 0.015. The
figure shows the level lines of G̃
as a function of the
dimensionless wave vector
k̃L = (k̃Lx , k̃Ly ). The critical
line is at an angle of 27.47◦. The
circular lines show the values of
λL/λp = 0.5, 1, 2, 3, 4

Substituting (31) and (32) into (34) and keeping only lead-
ing order terms in BL gives the following equation for the
correlation function:

〈b(ki )b∗(k j )〉 = |BL |2δ(ki − kL)δ(k j − kL)

+ C(ki )δ(ki − k j )

− BL

V (1)
ki ,kL ,k j

+ V (1)
ki ,k j ,kL

ω(ki ) − ω(kL) − ω(k j )
C(k j ) δ(ki − k j − kL)

− B∗
L

V (1)
k j ,kL ,ki

+ V (1)
k j ,ki ,kL

ω(k j ) − ω(kL) − ω(ki )
C(ki ) δ(k j − ki − kL)

− B∗
L

V (2)
ki ,kL ,k j

ω(ki ) + ω(kL) − ω(k j )
C(k j ) δ(ki − k j + kL)

− BL

V (2)
k j ,kL ,ki

ω(k j ) + ω(kL) − ω(ki )
C(ki ) δ(k j − ki + kL).

(35)

In the inhomogeneous case, due to the decomposition (31),
the two-wave-vector correlation function becomes:

〈Bi B∗
j 〉 = |BL |2δ(ki − kL )δ(k j − kL ) + 〈BS(ki )BS(k j )

∗〉. (36)

Equating this result with the right hand side of (35) yields
the following expression for the initial (inhomogeneous) two-
wave-vector correlation of the local random sea state:

〈BS(ki )BS(k j )
∗〉 = C(ki )δ(ki − k j )

− BL

V (1)
ki ,kL ,k j

+ V (1)
ki ,k j ,kL

ω(ki ) − ω(kL) − ω(k j )
C(k j ) δ(ki − k j − kL)

− B∗
L

V (1)
k j ,kL ,ki

+ V (1)
k j ,ki ,kL

ω(k j ) − ω(kL) − ω(ki )
C(ki ) δ(k j − ki − kL)

− B∗
L

V (2)
ki ,kL ,k j

ω(ki ) + ω(kL) − ω(k j )
C(k j ) δ(ki − k j + kL)

− BL

V (2)
k j ,kL ,ki

ω(k j ) + ω(kL) − ω(ki )
C(ki ) δ(k j − ki + kL).

(37)

Note that this equation correlates, at t = 0, waves that satisfy
the relation ki − k j = ±kL . This equation is the end result
of this section.

5.2 Numerical simulations

From now on, due to the complexity of the numerical compu-
tations involved, we restrict ourselves to waves propagating
in one dimension for both the sea state and the swell. We
begin by discretizing the C.S.Y. Eq. (7) as follows.

The discretization consists in defining a numerical wave
number space of N = 600 evenly spaced Fourier modes on
the interval [4/N , 4], since the peak wave kp = 1. Then one
replaces the continuous two-wave vector correlation function
by a discrete sum of deltas

Ri j (t) =
N∑

n,m=1

Rnm(t)δ(kn − ki )δ(km − k j ), (38)

where Rnm(t) is a discrete complex valued function; the cor-
relation between the amplitudes Bn and Bm at time t . Note
that correlations between complex amplitudes of waves out-
side the numerical grid are not taken into account by the delta
functions.

The time evolution of the discrete correlation function (38)
is governed by the following non-linear system of O.D.E.
called the discretized C.S.Y. equation:

d

dt
Ri j = −2i

N∑
m,n,p=1

Ti,m,n,pδ
n,p
i,m e

i�n,p
i,m t Rnj Rpm

+ 2i
N∑

m,n,p

Tj,m,n,pδ
n,p
j,me

−i�n,p
j,mt Rin Rmp.

(39)

Here δ
n,p
j,m stands for the Kronecker’s delta.

This system is complemented with the following initial
data. One uses Eq. (27) for the initial wave action spectrum:

Ri j (0) = Ci , for i = j = 1, . . . , N . (40)
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Initial inhomogeneous terms are obtained by discretizing
equation (37), i.e. by selecting only the correlations between
the waves in the numerical domain. This is achieved by sub-
stituting (19) into (37) and uponmanipulations with the delta
functions involved one reaches the following equation:

Ri j (0) = S(1)
i j + S(2)

i j + S(3)
i j + S(4)

i j , for i 	= j . (41)

Where each of the terms is given below:

S(1)
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−BL

V (1)
k j+kL ,kL ,k j

+ V (1)
k j+kL ,k j ,kL

ω(k j + kL) − ω(kL) − ω(k j )
C j (0)

for k j = k1, . . . , kN and ki = k j + kL .

0, otherwise.

S(2)
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−B∗
L

V (1)
ki+kL ,kL ,ki

+ V (1)
ki+kL ,ki ,kL

ω(ki + kL) − ω(kL) − ω(ki )
Ci (0)

for k j = k1, . . . , kN and ki = k j − kL .

0, otherwise.

S(3)
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−B∗
L

V (2)
ki−kL ,kL ,ki

ω(ki − kL) + ω(kL) − ω(ki )
Ci (0)

for k j = k1, . . . , kN and ki = k j − kL .

0, otherwise.

S(4)
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−BL
V (2)
ki−kL ,kL ,ki

ω(ki − kL) + ω(kL) − ω(ki )
Ci (0)

for ki = k1, . . . , kN and k j = ki − kL .

0, otherwise.

From now on, the wave number of the swell kL under con-
sideration also lies in the numerical grid.

Finally, the initial complex amplitude of the swell is
related to the physical amplitude of the wave aL by

|BL |2 = 2gπ2

ωL
a2L , (42)

One also needs to specify an initial phase θL . In all our numer-
ical simulations shown here, the value of the phase is θL = 0,
in which case BL = |BL |.

The evolution of the wave action spectrum R j j and the
variance ρ(x, t) do not depend on the initial phase θL . It
only affects the evolution of two-wave vector correlations of
the form Ri j for i 	= j .

The parameters of the different JONSWAP spectra,
together with the parameters of the swell are given in Table
1.

The choice of parameters α and γ in cases A was taken
from case B4 in Ribal et al. (2013). Cases B correspond to the
most unstable case found in Andrade and Stiassnie (2020).

As was mentioned above, by choosing N wave numbers
in the numerical grid, one ends up with a number of two-

wave vector correlations of O(N 2), to be evolved in time.
Nevertheless, as was pointed out in Andrade and Stiassnie
(2020), during the time evolution not all the possible corre-
lations are activated. The only correlations that participate in
the long-time evolution have the form Ri j where

ki − k j = nkL , for some integer n. (43)

Here kL is the wave number of the swell, which also has to
be on the numerical grid.

This observation allows us to work efficiently with
a smaller number of two-wave number correlations. For
instance for case A3 the wave vector of the swell is kL =
0.34 = 51dk, with dk = 4/600. The number of two-
wave correlations was dramatically reduced3 from 180,300
to 3834.

The time integration of Eq. (39) is computed with MAT-
LAB’s ode45 routinewith relative and absolute tolerances set
to 10−12. The accuracy of the numerical solver can be seen
from the conservation of the invariants associated with the
discrete C.S.Y. equation namely, wave action A, momentum
M and H̃ , see Andrade and Stiassnie (2020) or Appendix B.
Note that the invariants depend only on the initial spectrum,
not on kL . In cases A1–A5 the values of the invariants are
A = 1.90,M = 2.10 and H̃ = 6.19 and in cases B1–B5 are
A = 1.54, M = 1.64 and H̃ = 4.94.

In the following sections we present numerical simula-
tions of non-linear, long-time evolution. Our main results
are the evolution of the wave action spectrum, the evolution
of the variance of the free surface and an increase in the
probability of freak wave occurrence.

6 Results for the wave action spectrum

Once the time evolution of the correlation function is com-
puted, we analyze the evolution of the wave action spectrum
R j j (t).

In Figs. 3 and 4 we plot the long time evolution of the
wave action spectrum for each case. Note that we use the
dimensionless time variable t̃ = (ε2ωp)t . In all cases the
final time is t̃ = 150, which corresponds to about 700 peak
periods for cases A and about 900 peak periods for cases B.
In the plots the spectrum was normalized with respect to the
initial wave action at the peak wave kp:

3 Taking the symmetry Ri j = R∗
j i into account.
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Fig. 3 Long time evolution of
the wave action spectrum
R j j/Cp . Cases A1–A5 from top
to bottom. The black solid line
shows the wave number of the
swell kL

Cp = 4gπ2αγ e−5/4dk

2k3pωp
. (44)

Initially, the evolution of the spectrum is qualitatively sim-
ilar in all cases considered here. There is a “warm-up” period
where there is no visible spectral evolution whatsoever. It is
followed by an energy exchange between the peak wave and
neighboring waves. Although the energy going to both sides
of the peak wave, there is a significant down shift, i.e. a sig-
nificant portion of the energy goes to waves with smaller

wave numbers. Then the effect of the wave number of the
perturbation kL becomes visible.

When kL is small, the warm up is followed by a fast broad-
ening of the spectrum, with the bulk of the energy being
mixed among neighboring longer waves. This can be seen
from the first two panels in Figs. 3 and 4 corresponding to
cases A1, A2, B1 and B2, respectively.

Cases A3, and B3 were chosen so that kL causes the
fastest growth rate in each case. In these cases the energy
exchange follows a different pattern. The bulk of the energy
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Fig. 4 Long time evolution of
the wave action spectrum
R j j/Cp . Cases B1–B5 from top
to bottom. The black solid line
shows the wave number of the
swell kL

is exchanged back and forth between the peak and neighbor-
ing (longer) waves with some energy leaking out to shorter
waves accounting for an overall broadening of the spectrum.

A similar behavior is observed in cases A4 and B4. These
cases used the same wave vector of the swell as A3 and B3
did. The only difference being the amplitude of the initial
swell. From 1 cm it was dropped down to 1 mm. Aside from
a longer warm-up period, the evolution of these cases is prac-
tically indistinguishable from those of cases A3 and B3.

Finally cases A5 and B5, characterized by having the
largest kL , also exhibit a different type of behavior from all
the previous cases. This time the bulk of the energy remains
around the peak wave with little energy being exchanged, in
a recurrent manner, among neighboring waves.

We point out that as the wave number of the swell
increases, kL leaves the instability region, see Figs. 1 and
2, thus stabilizing the system. From the spectral time evolu-
tion point of view, the wave action spectrum would become
stationary. Despite this fact, it is interesting to see that for
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cases A5 and B5, cases where kL sits inside the instability
region, there is some kind of stabilization effect taking place.
There is little spectral evolution as compared to any of the
other cases.

One possible explanation of this effect is the following.
When kL is small, the bound-waves introduce correlations
between waves that are close to one another. This type of
correlations among the waves seems to facilitate the energy
exchange among the wave components leading to a broad-
ening of the spectrum as seen especially in cases A1, A2,
B1 and B2. On the other hand, when kL is large and as the
spectrum is narrow, the bound-waves are correlating waves
inside the spectrumwith waves that have little energy outside
of it. Note that the evolution is almost periodic in cases A5
and B5 somewhat resembling the recurrent behavior in the
Benjamin–Fier instability, see Mei et al. (2018).

7 Results for the variance of the free surface

Now we turn to the variance of the free surface elevation
which can be computed from Ri j as:

ρ(x, t) = 1

8gπ2

N∑
i, j=1

√
ωiω j

[
Ri j e

i((ki−k j )x−(ωi−ω j )t) + c.c.
]

(45)

This equation is obtained by averaging the square of the free
surface elevation, so it is proportional to the average wave
energy of the wave field, see Holthuijsen (2010). Details on
the derivation of Eq. (45) can be found in Andrade and Sti-
assnie (2020).

There are two properties of the variance. First, it is a
periodic function of x with period 2π/kL . Second, in the
homogeneous case the variance is constant. We denote it in
this case as

ρh = 1

4gπ2

N∑
j=1

ω jC j . (46)

The value of the homogeneous variance is used to normal-
ize the variance thus showing how the energy changes with
respect to that of the homogeneous unperturbed sea state.

We introduce the following dimensionless variables:

x̃ = (εkp)x . (47)

ρ̃ = ρ/ρh . (48)

Owing to the spatial periodicity of the variance and in
order to highlight its time evolution, we have shifted ρ̃ peri-
odically (in x̃) so that its maximum appears always towards
the edge of the figure. The level lines of the variance are

plotted in Fig. 5 for cases A1–A5 and in Fig. 6 for cases
B1–B5.

In cases A1, A2, B1 and B2 the variance shows a manifes-
tation of the apparent “turbulent” structure of the spectrum.
This type of behavior has not been observed before in neither
studies of solutions of the C.S.Y. equation nor in solutions of
the Alber’s equation.

The time evolution of the variance of cases A3, A4, B3
and B4 follows the following pattern. Their level lines form
a sequence of circular shapes, with centers towards the upper
and lower edges of the figures, showing a local concentration
of wave energy. As the time evolution progresses, these level
lines flat out, indicating that the wave field reaches a state
of continuous concentration of energy. These results were
recently reported in Andrade and Stiassnie (2020).

In all the cases treated so far, the evolution of the vari-
ance behaves differently to what was predicted by Alber’s
equation, despite the fact that the initial wave action spec-
trum is narrow. Previous results concerning the evolution of
the variance, see Stiassnie et al. (2008), Regev et al. (2008)
or Ribal et al. (2013), show that its evolution is recurrent in
time. This is certainly the main difference between solutions
of the C.S.Y. equation and Alber’s equation.

The variance of cases A3, A4, B3 and B4 also reveals
that the amplitude of the swell merely changes the warm-up
period before the energy exchange. A similar behavior has
been observed by Stuhlmeier and Stiassnie in the evolution of
degenerated quartets of waves, see Stuhlmeier and Stiassnie
(2019).

Cases A5 and B5 also show a different behavior. Their
variance displays a recurrent pattern typical of solutions of
Alber’s equation. Moreover one can see how the variance
corresponds to the evolution of its spectrum.

8 Results for the freak-wave statistics

The results of the previous sections are used to compute the
probability of the wave height H exceeding a value H0, on
an interval [0, L] during a time window [0, T ]. These prob-
abilities depend on the time evolution of the dimensionless
variance ρ̃. They are computed by:

P(H > H0) = 1

LT

∫ L

0

∫ T

0
exp

(
−

(
H0

Hrms0

)2 1

ρ̃(x, t)

)
dxdt .

(49)

Here Hrms0 denotes theRMS (rootmean square)wave height
of the homogeneous case. It is related to the (constant) homo-
geneous variance ρh by:

Hrms0 = √
8ρh . (50)
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Fig. 5 Long time evolution of
the variance of the free surface
ρ(x, t)/ρh . Cases A1–A5 from
top to bottom

Note that in the homogeneous case ρ̃ = 1 and equation (49)
reduces to the Rayleigh distribution

P(H > H0) = exp

((
− H0

Hrms0

)2
)

. (51)

In what follows, owing to the spatial periodicity of the vari-
ance, L is set to one period and the time window under
consideration is [0, T̃ = 150]. In this case Eq. (49) can be

shown to be equivalent to that originally derived by Regev
et al. (2008) and used in Ribal et al. (2013).

As our current interest is the probability of encountering
freak waves, we need an estimate for the significant wave
height Hs . Following Holthuijsen (2010), Hs is readily esti-
mated from the spectrum as Hs = 4

√
m0, where

√
m0 is the

standard deviation of the surface elevation, i.e.
√
m0 = √

ρh .
Thus the following relation holds

Hs = √
2Hrms0. (52)
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Fig. 6 Long time evolution of
the variance of the free surface
ρ(x, t)/ρh . Cases B1–B5 from
top to bottom

In Fig. 7 we plot the probability of encountering freak
waves, namely: the probability of wave heights exceeding
two times the significant wave height Hs . Precise values are
given in Table 2. The upper panel corresponds to cases A and
the lower panel to cases B.

By looking at the freak-wave probabilities of casesA1–A4
andB1–B4, one can see that they are significantly higher than
those of cases A5 and B5. In any case they are much higher
than the probabilities taken from the Rayleigh distribution.
Note that the variances of cases A1–A4 and B1–B4, reach

values of about four to six times the energy of the unperturbed
homogeneous wave field. The regions where such concentra-
tion of energy happens are the breeding ground for extreme
waves. The fact that throughout the evolution there are many
of such high energy regions, manifest itself in the statistics
as an increase in the probability of freak wave occurrence.

Note that the probabilities for cases A3, A4, as well as B3
and B4 almost overlap with each other. This small discrep-
ancy is due to the relatively longer warm up period in A4 and
B4 as opposed to that of A3 and B3 respectively.
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Fig. 7 Freak wave probabilities. Top panel: cases A1–A5. Bottom
panel: cases B1–B5. A1 and B1: green broken line. A2 and B2: blue
dotted line. A3 and B3: red solid line. A4 and B4: yellow solid line.
A5 and B5: Purple line with crosses. Rayleigh distribution in black line
with circles

On the other hand, the variances of cases A5 and B5 reach
smaller values, barely twice the energy of the undisturbed
wave field. The fact that the energy concentration is lower
reflects in the somewhat smaller freak-wave probabilities for
these cases.

Finally, we point out that without the swell, i.e. if BL =
0, there is no spectral evolution, the variance is stationary
ρ(x, t) = ρh andEq. (49) becomes theRayleigh distribution,
Eq. (51).

9 Summary

The goal of this article was to study a physical mechanism
capable of triggering the formation of freak-waves. This
mechanism is based on the non-linear, long time evolution
of an inhomogeneous instability, and its trigger is the initial

Table 2 Probabilities of encountering freak waves in each case

Cases P(H > 2Hs) P(H > 3Hs)

Case A1 0.0043 0.0002

Case A2 0.0058 0.0003

Case A3 0.0082 0.0004

Case A4 0.0088 0.0005

Case A5 0.0012 2.4 × 10−6

Case B1 0.0057 0.0004

Case B2 0.0081 0.0006

Case B3 0.0089 0.0005

Case B4 0.0094 0.0006

Case B5 0.0013 2.9 × 10−6

Rayleigh 0.0003 1.2 × 10−8

two-wave vector correlation coming from the bound-waves
(between the sea and the swell).

Our new approach of finding the instability region of the
spectrum, by means of the integral Eq. (18), is an improve-
ment over the method used in Andrade and Stiassnie (2020);
as it allows to treat oblique and even opposing swells in the
inhomogeneous disturbance.

We point out that, by choosing awave vectorkL , the initial
disturbance (17) is no more than a correlation between the
random complex amplitudes B(k) with B(k ± kL). As our
results are based on a broad-bandedmodel there is no a priori
restriction on kL . On the other hand, when using a narrow
banded model, the waves k and k ± kL have to be close to
each other, a condition that in principle forces kL to be small.

The examples treated here were all unstable to small wave
vectors kL , suggesting that not only a swell may trigger the
generation of freak-waves, but also infra gravity waves:long
frequency waves generated for example by triad interactions
of shoaling waves and their coastal reflections, see Rawat
et al. (2014).

It should be noted that the initial inhomogeneous distur-
bance, used to initialize the time evolution, i.e. Eq. (37),
comes from the bound-waves, not from solving Eq. (18) for
some λ and some function M . Nevertheless, from the time
evolution, we see that the bound-waves successfully trigger
the instability.

In this article we dealt with narrow, hence unstable, JON-
SWAP spectrum as indicated by the values of the peakedness
parameter of the spectrum γ = 10 and 20. In the ocean,
smaller values of γ , between 1 and 3 are more common.
For the values of the parameter α used in our examples, a
JONSWAP spectrum, with these smaller values of γ , is sta-
ble. This result was also obtained by Ribal et al. (2013) and
Gramstad (2017) using Alber’s equation. A plot of the insta-
bility region of the JONSWAP spectrum in the (γ, α)−plane
can be found in Fig. 2a of Andrade and Stiassnie (2020).
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For the cases where the spectrum is stable we saw no
noticeable change in the non linear spectral evolution. Like-
wise, therewas little change in the evolution of the variance of
the free surface and the statistics, of the underlying sea state,
closely followed the Rayleigh distribution. In other words,
themechanism of freakwave generation that we studied does
not work in broad-banded sea states.

The C.S.Y. equation and its linearization, Eq. (10), can be
used to study any type of wave spectrum. Despite of this gen-
erality, and due to the increasing complexity of the numerical
calculations involved, we did not study a fully two dimen-
sional case. The cases chosen for non-linear time evolution
were one dimensional andwere chosen so that we could com-
pare with the results in Andrade and Stiassnie (2020).

One way of looking at our results is the following. Let
us assume that there is a local sea state propagating towards
the coast line, generated for instance by an offshore storm.
Such sea state is destabilized by the bound-waves generated
by either a following swell or, by reflections from the shore-
line. Provided that the duration of the storm is long enough,
so that sea state is maintained, there is a period of no big
changes in the ocean (the warm-up period) and then, depend-
ing on the particular characteristics of the sea and the swell,
it would develop regions of high wave energy, where one
should expect to encounter extreme waves.
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Appendix A

In this appendixwe show the derivation of the discrete system
of Eqs. (21) and (22), from the continuous equation (18),
assuming a wave action spectrum of the form (19) and any
wave vector kL .

To start with, note that by substituting Eq. (19) into (11)
and integrating, the frequency � becomes:

�0 = ω0 + 2
N∑
j=1

T0, j,0, jC j . (53)

Then we use an ansatz for M , see Eq. (20). This is moti-
vated by the following. If one substitutes Eq. (19) into the
right hand side of Eq. (18) the result would be a sum of
Dirac deltas, supported on the pointsm±kL/2. On the other
hand substituting (19) into the left hand side of (18) gives
a continuous function. The equality can only be fulfilled if

M(m) itself is a sum of Dirac deltas, supported on the points
m ± kL/2. Any such sum of deltas can be written as (20).

Substituting (19) and (20) into the left hand side of (18)
yields:

L.H.S. =
N∑
j=1

(
λ + � j + � j−k

)
Mm

j δ(m − k j + kL/2)

+
N∑
j=1

(
λ + � j+k − � j

)
Mp

j δ(m − k j − kL/2).

(54)

On the other hand, the right hand side of (18) becomes

R.H.S. = 2
N∑
j=1

C j I (k j − kL/2)δ(m − k j + kL/2)

− 2
N∑
j=1

C j I (k j + kL/2)δ(m − k j − kL/2).

(55)

Where I denotes the integral of the kernel

I (m) =
∫

T (m + kL/2,u − kL/2,m

− kL/2,u + kL/2)M(u) du

=
N∑
j=1

Mm
j T (m + kL/2,k j − kL ,m − kL/2,k j )

+
N∑
j=1

Mp
j T (m + kL/2,k j ,m − kL/2,k j + kL).

(56)

Finally one equates all the terms in (54) with those of (55),
according to their corresponding delta function. This results
in the following 2N system of equations, for Mm

i and Mp
i

and i = 1, . . . , N :

(λ + �i − �i−k) M
m
i

= 2Ci

N∑
j=1

Mm
j Ti, j−k,i−k, j + Mp

j Ti, j,i−k, j+k .
(57)

(λ + �i + k − �i ) M
p
i

= −2Ci

N∑
j=1

Mm
j Ti+k, j−k,i, j + Mp

j Ti+k, j,i, j+k .
(58)

Recall that the subscript k stands for the wave vector kL thus,
Ti, j−k,i−k, j = T (ki ,k j − kL ,ki − kL ,k j ), etc. These are
Eqs. (21) and (22) respectively.
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Appendix B

In this appendix we give the invariants of the C.S.Y. equation
namely, wave action A, momentum M and a third invariant
H̃ , related to the Hamiltonian.

The invariants are

A =
∫

R j j dk j . (59)

M =
∫

k j R j j dk j . (60)

H̃ =
∫

ω j R j j dk j −
∫∫∫∫

Tj,m,n,pδ
n,p
j,m�

n,p
j,m

×
∫ t

0
Im

(
ei�

n,p
j,ms Rnj Rpm

)
ds dk j,m,n,p. (61)

The invariants of the discrete C.S.Y. equation are formally
obtained by replacing the integrals by discrete sums.
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