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A B S T R A C T

We discuss the hydrodynamics of a wave energy converter consisting of two vertically floating, coaxial cylinders
connected by dampers and allowed to heave, surge and pitch. This design, viable in deep water and able to extract
energy independent of the incident wave direction, is examined for monochromatic waves as well as broad-
banded seas described by a Pierson Moskowitz spectrum. Several possible device sizes are considered, and
their performance is investigated for a design spectrum, as well as for more severe sea states, with a view towards
survivability of the converters. In terms of device motions and captured power, a quantitative assessment of
converter design as it relates to survival and operation is provided. Most results are given in dimensionless form to
allow for a wide range of applications.
1. Introduction

The intention of this study is two-fold, providing on one hand a
comprehensive account of the hydrodynamics of a system of two coaxial,
vertically–floating cylinders envisioned as a model for a wave energy
converter (WEC), and subsequently assessing the size and survivability of
this system for various sea–states. The optimal size of a floating–body
WEC will depend significantly on the length of the waves typically
encountered. This dependence highlights a major difficulty of floating-
body WEC design: the WEC must be small enough to undergo signifi-
cant motions, and so generate power, and yet large enough to be robust
and survive the challenges of the marine environment.

The system proposed here to model a WEC relies on the relative
motion of two bodies, rather than on the motion of a body relative to a
fixed frame (whichmay be either the sea bed or a bottom fixed structure),
and is termed a wave-activated body or self-reacting device. Such devices
may be installed in deep water, where the large distance between the sea-
bed and the surface would otherwise be prohibitive. The mooring system
for such devices has the sole role of counteracting drift and current
forces, allowing the weight of moorings and anchors to be relatively
small (see (Cerveira et al., 2013) and references therein).

Due to their ubiquity in ocean engineering, a rich literature exists on
the interaction of water waves and cylindrical bodies. The radiation
problem in heave only was addressed by Ursell (1949), and the scattering
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problem by Dean and Ursell (1959). Miles and Gilbert (1968) later
employed a variational approximation to provide the far field potential
for scattering by a circular dock, along with the lateral forces on the dock.
However, their results were subsequently found to contain several
inaccuracies, in particular in their calculations of the radiation forces.
This prompted Garrett (1971) to take up the problem afresh, and estab-
lish the scattering forces for a circular dock. Subsequently, Black et al.
(1971) revisited the application of variational methods to the radiation
and scattering problem by several cylindrical geometries, employing
Haskind's theorem to give the wave forces. This latter, variational
approach did not yield the added mass and damping coefficients. Hence,
some years later Yeung (1981) studied the radiation problem of a vertical
cylinder floating on the water surface and undergoing the combined
motions of heave, surge and pitch, and obtained these hydrodynamic
coefficients. More recently, Bhatta (2007) also gave the added mass and
damping coefficient of a vertical cylinder undergoing heave motion, in
terms of the two dimensionless ratios characterizing the problem (depth
to radius and draft to radius). While prior work had focused on the finite
depth case, recently Finnegan et al. (2013) treated by means of an
analytical approximation due to Leppington the forces on a truncated
vertical cylinder in water of infinite depth.

In the context of wave energy, the consideration of floating cylinders
as models of WECs goes back at least to Berggren and Johansson (1992),
who approximated a device described by Hagerman by two floating,
lmeier), miky@technion.ac.il (M. Stiassnie).
, 1550 Hai Gang Da Dao, 201306 Shanghai, China.
PL4 8AA, United Kingdom.

017

mailto:xudl@shmtu.edu.cn
mailto:raphael.stuhlmeier@plymouth.ac.uk
mailto:miky@technion.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2017.10.012&domain=pdf
www.sciencedirect.com/science/journal/00298018
http://www.elsevier.com/locate/oceaneng
https://doi.org/10.1016/j.oceaneng.2017.10.012
https://doi.org/10.1016/j.oceaneng.2017.10.012
https://doi.org/10.1016/j.oceaneng.2017.10.012


Fig. 1. Schematic depiction of the WEC geometry.
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axisymmetric cylinders oscillating in heave, albeit without any consid-
erations of captured power. More recently, Garnaud and Mei (2010)
revisited the single buoy with the intention of studying it in densely
packed arrays, giving the captured power for buoys hanging from a large
frame. Such a floating, single-cylinder absorber was also employed by
Child and Venugopal (2010) in their discussion of optimization of WEC
arrays, by Borgarino et al. (2012) as a generic model to investigate wave
interaction effects, and many others. Similarly, Teillant et al. (2012)
employ an axisymmetric, heaving two-body device for their study ofWEC
economics, without detailed hydrodynamic considerations. A slightly
different fixed–reference WEC was considered by Engstr€om et al. (2009),
who added a sphere under the floating cylinder. This two-body config-
uration of floating cylinder and submerged sphere was then assumed
connected to the sea bed by a generator, and its performance analyzed.
Zheng et al. (2005), in a generalization of Berggren& Johansson to three
modes of motion, considered the hydrodynamics of two unconnected,
coaxial floating cylinders, again without considering power capture. The
power capture for a self-reacting device consisting of two vertical cyl-
inders moving in heave was recently obtained for attacking mono-
chromatic incident waves by Wu et al. (2014), albeit with a rather terse
discussion of their results. Such self-reacting twin cylinder WEC models
have the advantage of being feasible in deep water, where reaction
against the fixed sea-bed is impractical, while nevertheless allowing for a
closed form solution of the linear wave-structure interaction problem,
albeit in series form. The submerged lower body can be demonstrated to
present a very stable reference to react against, with the performance of
such a two-body WEC matching that of a single
bottom-referenced cylinder.

The present work combines features of several previous studies, and
considers the novel case of two floating cylinders, each allowed to move
in all three modes of motion available to an axisymmetric body, con-
nected by an idealized power take–off (PTO) represented by a linear
damper of constant characteristics.3 Subsequent to a detailed description
of the wave–structure interaction problem, based on eigenfunction
expansion techniques, two main parameters characterizing the device
size and damping coefficient are examined. The performance of WECs of
different sizes, in terms of explicit values for the motions and captured
power, is then given from solutions of the governing equations for
various incident waves.

We undertake our parametric study with an eye towards applications,
and thus also consider irregular waves in the form of a Pierson-
Moskowitz (PM) spectrum (see e.g. recent work on optimizing a
floating box-barge under irregular waves by B�odai and Srinil (2015)).
While scatter diagrams may be available for some sites where an
assessment of the wave resource has been carried out, where this is not
the case estimates based on wind speed will need to be made. To this end,
we present our data nondimensionalized on the basis of wind speed,
which uniquely determines the PM spectrum. Values of significant wave
height and peak period may be readily derived therefrom, and the data
recast in these terms if desired.

When an incident spectrum is considered, it is no longer possible to
assign a simple value to the displacement in heave, surge, and pitch of a
floating body. To remedy this, the notion of significant displacement,
derived from the spectral description of the sea surface, is introduced to
give some quantitative information about the threemotions of the device.
This also allows for a measure of survivability for various WEC sizes and
sea-states, by examining underwhich conditions thedevice displacements
grow large in a statistical sense.An illustrative grading system is devised to
categorize the various performance metrics of the self-reacting WECs.

The paper is organized as follows: in Section 2 we present the physical
set-up of the problem. This consists in presenting the twin cylinder WEC
3 While studies on PTO control show a promising potential for enhancing performance,
particularly for devices with a narrow-banded natural response, practical and robust ap-
plications must still be developed (see Hong et al. (2014)).
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and characterizing its geometry, and subsequently presenting the PM
spectra for design and survivability considerations. In Section 3 we
present, very briefly, the basic mathematical formulation of the gov-
erning equations and sketch the solution procedure. Subsequently, we
employ the hydrodynamic coefficients and forces found from solving the
equations of Section 3 to characterizing WEC design under mono-
chromatic waves in Section 4, and under irregular waves given by a
Pierson-Moskowitz spectrum in Section 5. A discussion of these results
with a view to applications is given in Section 6, which is subdivided into
discussions of power capture, survivability, and a brief synthesis of the
preceding sections. Finally, Section 7 presents some concluding remarks
and perspectives.

2. Physical preliminaries

2.1. Geometry

The geometry and basic parameters of the twin-cylinder WEC are
depicted in Fig. 1. The Oxy plane is the still water surface and the z-axis
points upwards. (r; θ) are polar coordinates in the horizontal plane, such
that x ¼ r cos θ and y ¼ r sin θ: The upper cylinder floats on the water
surface with a draft H1. To provide for flotational stability, it is important
to note that the mass of this cylinder is not uniformly distributed, but is
divided into three parts: a freeboard, i.e. the extension of the cylinder
above the wave run-up with height l0 and density ρ0; as well as sub-
merged sections with heights l1 and l2 and densities ρ1 and ρ2, respec-
tively. The lower cylinder is entirely submerged with a height H3, and
assumed to be divided into two parts with densities ρ3 and ρ4 and lengths
l3 and l4, respectively. The distance between the two cylinders in equi-
librium isH2. Both of them have the same radius R, and the water depth h
is taken to be very large compared to the attacking wave length, with the
intention of approximating deep-water conditions.

As shown in Fig. 1, the two cylinders are connected by a continuously
distributed dashpot, which connects the upper edge of the lower cylinder
with the lower edge of the upper cylinder at r ¼ R. The integrated
dashpot coefficient is C, which results in a dashpot coefficient per length
C

2πR. The dashpot is considered to represent a PTO, which generates en-
ergy from both the relative heave and pitch motion of the cylinders.4
4 Although the surge motion itself is of first order, the take-off due to sway is a second
order quantity, and thus negligible in comparison with the take-off in heave or pitch
modes, which are first order.
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Since the two cylinders are axisymmetric, only these three modes are
studied. The heave and surge motions will give rise to relative motions in
z and x directions, respectively. For waves propagating in the
x�direction, the two cylinders pitch around the y-axis in the mean free
surface (z ¼ 0), yielding a relative angle about this axis.

This formulation of the problem leaves us with thirteen parameters
ðfHiji 2 f1; 2; 3gg; flj

��j 2 f0;1;3gg; fρj
��j 2 f0;1;2;3; 4gg;R; and CÞ

characterizing the WEC. Before proceeding, we will make several re-
strictions to ensure that the problem remains manageable; nevertheless,
we shall see that a wealth of interesting phenomena and properties of the
WEC are still accounted for.

For simplicity, we will assume the height of each cylinder, as well as
the spacing between the cylinders is identical to their radius, and denote
the single size parameter by q, i.e.

H1 ¼ H2 ¼ H3 ¼ R ≡ q: (1)

For the density distribution of the cylinders, we shall assume

ρ1 ¼ ρ3 ¼
3
4
ρ; ρ2 ¼ ρ4 ¼

3
2
ρ; l1 ¼ l3 ¼ 2l2 ¼ 2l4 ¼ 2

3
q; (2)

where ρ is the density of the water. In order to further reduce the number
of parameters we shall choose ρ0≪ρ: Thus, the design problem is reduced
to two parameters, a size q and dashpot coefficient C, whose interplay
with incoming waves of certain frequencies is the issue at hand. We shall
see that suspending the lower cylinder at a depth 2q below the still water
surface has the desired effect of rendering its motion rather small, and
thus creating a relatively stable point for the upper cylinder to
react against.

There are several reasonable criteria which may govern the design of
a WEC. Evidently, theWEC should capture as much of the incoming wave
energy as possible. At the same time, as economic viability is the prime
driver behind wave energy technology, the costs should be kept low; in
practical terms, this may mean that device size should be kept small.
Competing with this are concerns over the survivability of the converter,
which dictate that displacements of the WEC not be too large under se-
vere conditions, favoring larger devices. We shall return to these issues in
detail in later sections.
Table 1
The wind speed U; significant wave height Hð1=3Þ; peak wavenumber kp ; and peak wave-
length λp ¼ 2π=kp associated with PM spectra used for design and survivability
considerations.

Sd Ss1 Ss2

U ðm=sÞ 10 15 20
Hð1=3Þ ðmÞ 2.47 5.55 9.87
kp ð1=mÞ 0.065 0.029 0.016
λp ðmÞ 96.30 216.67 385.19
2.2. The Pierson Moskowitz spectrum

One of the most common descriptions of a sea-state for engineering
purposes is the unidirectional Pierson Moskowitz (PM) spectrum, here
given as a function of wavenumber k :

SðkÞ ¼ 0:00405
k3

exp
�
� 0:55411

g2

U4k2

�
; (3)

where U is the mean wind speed at a height of 10 m above the mean
surface level, and g is the gravitational acceleration. This empirically
derived formula gives the energy distribution for wind waves in deep
water, and differs from the JONSWAP spectrum only by the addition of a
spectral–peak enhancement factor.

This spectrum (3) readily yields a number of important values asso-
ciated with the sea-state:

Hð1=3Þ ¼ 0:24181U2
�
g; (4)

kp ¼ 0:66570g
�
U2; (5)

where Hð1=3Þ is the significant wave height and kp is the wave number of
the spectral peak for a given wind speed U. This makes it easy to present
subsequent results in an alternative form when desired. A mono-
chromatic wave with wavenumber kp and the same wave energy density
as the PM spectrum will have an amplitude
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a0 kp ¼ 0:08549U2 g: (6)

� � �
For subsequent illustration it will be necessary to have some concrete,

physical examples, which means specifying a sea-state via a wind speed
valueU:Our design conditions (denoted by a subscript d) will correspond
to a wind speed Ud ¼ 10 m/s, while we will consider two “severe states”
(denoted by subscripts s1 and s2) with regard to the survivability, cor-
responding to wind speeds Us1 ¼ 15 m/s and Us2 ¼ 20 m/s. These are
summarized in Table 1.

3. Governing equations

Our approach to solving the wave-structure problem for the twin-
cylinder WEC relies on domain decomposition, which enables the use
of separation of variables techniques, and eigenfunction expansion
methods, whereby the solutions are developed in series of eigenfunctions
(in the context of floating cylinders, see Black and Mei (1970)), who give
a comprehensive description of the method, or more generally, Linton
and McIver (2001), Chs.2.4.1 & 2.5.2, or Zheng et al. (2005), Secs. 2 & 3
for a recent application to floating cylinders). As the full formulation is
rather lengthy, we only indicate the most important equations, and refer
the interested reader to work cited above.

The fluid is assumed to be incompressible and inviscid, and the flow
irrotational. Introducing a velocity potential Φðr; θ; z; tÞ; and assuming
periodic motion of frequency ω; the potential is separated into spatial and
temporal parts,

Φðr; θ; z; tÞ ¼ ϕðr; θ; zÞeiωt; (7)

where ϕðr; θ; zÞ satisfies the Laplace equation:

ϕrr þ
1
r
ϕr þ

1
r2
ϕθθ þ ϕzz ¼ 0; (8)

subject to the linearized boundary conditions on the free surface z ¼ 0
and on the bed z ¼ �h:

ϕz � σϕ ¼ 0; on z ¼ 0; r>R; (9)

ϕz ¼ 0; on z ¼ �h; (10)

where σ ¼ ω2=g:
At the interface between structure and fluid, the normal velocity of

the structure must equal that of the adjacent fluid particles, written in
terms of the potential (7):

∂Φ
∂n

¼ Vn; (11)

where Vn is the component of the structure's velocity in the direction of
the outward pointing normal vector n; which may be applied at the
equilibrium surface under the assumptions of linearity. Owing to this
very linearity, we continue with the well-known decomposition of the
problem into two parts: one due to the waves (ϕS) scattered from the
structure (which is assumed fixed) by the incident wave field, and one
due to the waves (ϕR) radiated by the motion of the structure, such that
ϕ ¼ ϕS þ ϕR: ϕS is decomposed further into the potential due to the



Fig. 2. Domain decomposition for the twin-cylinder problem.
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incident wave ϕI and that due to the waves diffracted from the fixed
structure ϕD; where

∂ϕD

∂n
¼ �∂ϕI

∂n
on the body surface S: (12)

The remaining radiated part of the potential ϕR must then satisfy (11),
where the normal velocities are to be determined from the equations of
motion. We shall consider an incident monochromatic wave with
amplitude a0; so that ϕI is known a priori.

Introducing the as-yet unknown displacements of the upper (j ¼ 1)
and lower (j ¼ 2) cylinder for the three modes of motion

ζzj ¼ ζzj0e
iωt for heave; (13)

ζxj ¼ ζxj0e
iωt for surge; (14)

θj ¼ θj0eiωt for pitch; (15)

where ζzj0, ζxj0 and θj0 are the complex amplitudes of the corresponding
displacements, we can write the boundary condition (11) for the spatial
part of the total potential ϕ in the following form:

ϕz ¼ iωζz10 � iωθ10r cosθ; on z ¼ �H1; r<R; (16)

ϕz ¼ iωζz20� iωθ20r cosθ; on z¼�ðH1þH2Þ; z¼�ðH1þH2þH3Þ; r<R

(17)

ϕr ¼ iωζx10 cosθ � iωθ10ðz0 � zÞ cosθ; on � H1 < z<0; r ¼ R;

(18)
Table 2
Notation for terms appearing in (20)–(25). Terms with subscripted x or z are forces, and
terms with subscripted y are torques.

Mi; i 2 f1;2g Mass of cylinder i:
Ii; i 2 f1;2g Moment of inertia of cylinder i about the y-axis
Fxi; Fyi; Fzi; i 2 f1;2g Exciting forces/torques on

cylinder i in the x; y; and z directions
Fαi→βj; i; j 2 f1;2g; α; β 2 fx; y; zg Hydrodynamic force/torque of the

α motion of cylinder i in the β direction
of cylinder j:

Fhs;yi; Fhs;zi ; i 2 f1;2g Hydrostatic forces/torques in the y and z
direction on cylinder i:

Fd;yi; Fd;zi ; i 2 f1;2g Forces/torques caused by the damping
system in the y and z direction on cylinder i:

ζxi0; ζzi0; θi0; i 2 f1;2g Displacement amplitudes of cylinder i in

ϕr ¼ iωζx20 cosθ � iωθ20ðz0 � zÞ cosθ; on � ðH1 þ H2 þ H3Þ< z< � ðH1 þ H2Þ; r ¼ R; (19)
where (16) is posed on the bottom of the upper cylinder, (17) on the top
and bottom of the lower cylinder, (18) on the sides of the upper cylinder,
and (19) on the sides of the lower cylinder. These conditions are sup-
plemented by Sommerfeld's radiation condition, requiring the diffracted
and radiated waves to be outgoing as r→∞:

Due to the configuration of two axisymmetric floating cylinders, we
must consider three fluid regions, one between the coaxial cylinders
(region II), one between the lower cylinder and the bed (region III), and
one outside the vertical extension of the cylinders (region I), as depicted
in Fig. 2. Subsequently the scattering problem is divided into three
problems, one in each subdomain, and the radiation problem for each of
the three modes of each of the two cylinders is divided into three prob-
lems. The reader may appreciate the effort involved in keeping track of,
solving, and subsequently matching solutions, of 21 problems for the
potentials involved. These potentials are then applied in calculating the
forces on the two cylinders, in the form of pressures from the sur-
rounding fluid.

The full expressions for the exciting, hydrodynamic, and hydrostatic
forces are lengthy and will not be given. We note only that we have found
excellent agreement between our results and published work (Garrett,
1971; Yeung, 1981; Berggren and Johansson, 1992; Zheng et al., 2005;
Bhatta, 2007, 2011; Garnaud and Mei, 2010) some of which is shown in
Appendix A.

The forces due to the fluid, together with those due to the dampers are
employed with Newton's second law to yield the body motions. The first
two equations, (20) and (21), equate the vertical (heave) forces with the
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masses and accelerations of the upper and lower cylinder, respectively.
The next, (22) and (23), are those for the horizontal (surge) forces. The
final pair, (24) and (25), equate the torques about the y�axis to the
angular acceleration times moment of inertia of the upper and lower
cylinder, respectively.

Fz1 þ Fz1→z1 þ Fz2→z1 þ Fhs;z1 þ Fd;z1 ¼ �ω2ζz10M1; (20)
Fz2 þ Fz1→z2 þ Fz2→z2 þ Fhs;z2 þ Fd;z2 ¼ �ω2ζz20M2; (21)

Fx1 þ Fx1→x1 þ Fx2→x1 þ Fy1→x1 þ Fy2→x1 ¼ �ω2ζx10M1; (22)

Fx2 þ Fx1→x2 þ Fx2→x2 þ Fy1→x2 þ Fy2→x2 ¼ �ω2ζx20M2; (23)

Fy1 þ Fx1→y1 þ Fx2→y1 þ Fy1→y1 þ Fy2→y1 þ Fhs;y1 þ Fd;y1 ¼ �ω2θ10I1;

(24)

Fy2 þ Fx1→y2 þ Fx2→y2 þ Fy1→y2 þ Fy2→y2 þ Fhs;y2 þ Fd;y2 ¼ �ω2θ20I2;

(25)
surge (ζx), heave (ζz), and pitch (θ).



Fig. 3. Displacement amplitudes for each of the two freely floating cylinders (C ¼ 0)
under the design monochromatic wave. ~ζz10: upper cylinder, thick line; ~ζz20: lower cyl-
inder, thin line.
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The terms appearing in the above equations are given in Table 2.
The masses and moments of inertia have the explicit form (see (1)

and (2))

M1 ¼ M2 ¼ ρπq3;

I1 ¼ 73
108

ρπq5;

I2 ¼ 757
108

ρπq5;

and the damping forces are

Fd;z1 ¼ �iωCðζz10 � ζz20Þeiωt;

Fd;z2 ¼ iωCðζz10 � ζz20Þeiωt;

Fd;y1 ¼ �1
2
iωCR2ðθ10 � θ20Þeiωt;

Fd;y2 ¼ 1
2
iωCR2ðθ10 � θ20Þeiωt:

After the displacements of the cylinders are obtained, the captured
power can then be calculated as follows:

Pa ¼ 1
2
Cω2ðζz10 � ζz20Þ

�
ζ�z10 � ζ�z20

�þ 1
4
Cω2R2ðθ10 � θ20Þ

�
θ�10 � θ�20

�
;

(26)

where ζ�zj0 and θ�j0 are the complex conjugates of ζzj0 and θj0, respectively.

4. Design of the WEC for monochromatic waves

We now undertake to examine the design of the WEC, based on the
three parameters characterizing the environmental conditions ρ; g; and
U; the two WEC parameters q and C; and the seven WEC performance
parameters calculated from the wave-structure interaction problem
Pa; ζx10; ζx20; ζz10; ζz20; θ10 and θ20: An application of Buckingham's π
theorem (Crowe et al., 2001) yields nine dimensionless quantities that

characterize this problem: q
U2=g,

C
ρU5=g2,

Pa
ρU7=g2,

ζzj0
U2=g,

ζxj0
U2=g, and θj0; where j 2

f1; 2g again denotes the upper and lower cylinder, respectively. In the
sequel, we will make use of a � to denote nondimensional variables, i.e.,
the nine dimensionless quantities above will be ~q; ~C; ePa; ~ζzj0; ~ζxj0; and ~θj0:

4.1. The WEC in heave motion under a monochromatic wave

For simplicity of presentation and ease of understanding we initially
consider only the heave mode, motivated by the fact that, while surge
and pitch are coupled, they are both independent of heave. The response
of the WEC under incoming monochromatic waves is first considered,
where our physical test-case corresponds to a monochromatic wave of
wavelength 96.3 m (equal to that at the peak of the design spectrum Sd)
and an amplitude ad ¼ 0:87 m; such that the total energy density of the
wave is equal to that of Sd; see (6) and Table 1.

4.1.1. Step 1: determination of the WEC's size
We first choose the dashpot coefficient C to be zero, whichmeans that

the two cylinders are freely floating. In this case, once the incident
monochromatic wave is given, the only WEC parameter to be determined
is q. Dimensional analysis can then be applied to the problem of deter-
mining the quantity of interest q for the motions of the upper cylinder
ζz10 and the lower cylinder ζz20 separately. Once again, Buckingham's π
theorem yields that, for the variables ρ; g;U; q; and ζzj0; there exist exactly
two nondimensional quantities, which must be related by a relation
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~ζzj0 ¼ Ψ1jð~qÞ: (27)
The maximum displacement of the cylinder j as a function of size ~q
thus corresponds to the extrema of Ψ1: Equation (27) is plotted in Fig. 3
for the upper and lower cylinders.

As we are ultimately interested in relative displacements of the cyl-
inders, the global maximum of Ψ11 ð~ζz10Þ and the local maximum of
Ψ12 ð~ζz20Þ which occur at ~q ¼ 0:97 yield the chosen design size.

4.1.2. Step 2: determination of the dashpot coefficient C
The maximum displacement in Fig. 3 is related to the resonance be-

tween the cylinders and the incident monochromatic wave. The intro-
duction of a damper, while changing the magnitude of the displacement,
can be shown to have no effect on the location of the resonant maximum,
which remains ~q ¼ 0:97 (see Fig. 3) even for various values of C. Thus,
the size of the WEC determined from the freely floating case is used to
specify the damping coefficient C.

Given the unique relationship between q and ζzj0; independent of C;
described above, the dimensional analysis yields an equation

~Pa ¼ Ψ2

�
~C; ~q

�
; (28)

where Ψ2 is plotted in Fig. 4 for the WEC size as determined in the last
section (~q ¼ 0:97).

We elect to determine the dashpot coefficient C from the maximum of
captured power Pa in Fig. 4, calculated from the heave terms only in (26).
This results in ~C ¼ 0:32 and ~Pa ¼ 0:0034.

Thus, the WEC design for a monochromatic wave has been deter-
mined. Taking the design wave introduced in the beginning of Section 4
as a physical example, the WEC has the dimensions q ¼ 9:9m and
C ¼ 3:3� 105Ns=m, and can capture Pa ¼ 3:5� 105 Watt from a mono-
chromatic wave 96.3 m long and 0.87 m in amplitude.

4.2. General motions of the WEC in monochromatic waves

Having treated the simpler case of heave-only motion, we now
consider the general case in which the WEC is additionally allowed to
undergo surge and pitch motions. Akin to the previous section which
only dealt with the heave motion, the design procedure of the WEC in the
general case is also divided into two steps, as illustrated in detail below.



Fig. 4. The relationship between the captured power ~Pa and the dashpot coefficient ~C for
the heave motion induced by the design monochromatic wave, where ~q ¼ 0:97.
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4.2.1. Step 1: determination of the WEC's size q
We start once again with the freely floating case, where the dashpot

coefficient C ¼ 0. Using the equations of motion (20)–(25), we can
obtain the displacements of the two cylinders in the x and z directions,
and the angle around the y axis.

Once the monochromatic wave is given, or equivalently, once the
mean wind speed for the corresponding PM spectrum is given (recall that
this can be used to specify a monochromatic wave for design purposes by
(6)), the physical process of determining the size of the WEC can be
written in the following dimensionless form:

~ζzj0 ¼ Ψ1jð~qÞ; (29)

~ζxj0 ¼ Ψ2jð~qÞ; (30)

θj0 ¼ Ψ3jð~qÞ; (31)
Fig. 5. Displacement amplitudes of the two freely-floating cylinders (C ¼ 0) in heave, surge and
~ζxj0: amplitude of the horizontal displacement; θj0: amplitude of the angle around the y axis. j
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where ζzj0 and ζxj0 denote the amplitudes of the vertical and horizontal
displacements respectively, θj0 is the amplitude of the angle around the y
axis, and j ¼ 1;2 corresponds to the upper and lower cylinder, respec-
tively. We now seek the maxima of the functions Ψ1j;Ψ2j and Ψ3j; which
correspond to the six curves presented in Fig. 5.

Due to the increase in number of modes, the picture of the displace-
ments is more complex than in the preceding section. It may be observed
that the heave mode is decoupled from the surge and pitch modes,
yielding again the global maximum at ~q ¼ 0:97: The surge and pitch
modes are coupled, and are observed to present a global maximum for
relative displacement at ~q ¼ 0:61; resulting in an ambiguous situation for
determining the size of the WEC.

4.2.2. Step 2: determination of the dashpot coefficient C
As in the preceding section, we now suppose that the size of the WEC

is given. The captured power Pa then depends on the dashpot coefficient
C. The determination of optimal power absorption as a function of
dashpot coefficient is described in dimensionless form by

ePa ¼ Ψ4

�
~C; ~q

�
; (32)

where, as we have seen, there is some flexibility in choice of q: The
function Ψ4 is plotted in Fig. 6 for both ~q ¼ 0:61 and ~q ¼ 0:97. For the
device operating optimally in heave (~q ¼ 0:97; thick line) there is a
unique maximum at ~C ¼ 0:34 with ePa ¼ 0:0035 (denoted Case E), very
close to the heave-only case discussed in Section 4.1. For the pitch–surge
optimized device (~q ¼ 0:61; thin line) there are two local maxima ~C ¼
0:035 and ~C ¼ 1:34; with corresponding ePa ¼ 0:0012 and 0:0013;
(denoted Case A1 and A2, respectively).

The situation for monochromatic incident waves is summed up in
Table 3 which shows the nondimensional size, optimal damping,
captured power, and displacement amplitudes for the cases discussed
above. As we have observed, introducing pitch and surge motions leads
to a two-fold branching in the design procedure. Firstly, in free motion,
one value of ~q is found to yield the largest pitch and surge displacements,
while another value yields the largest heave displacements. While the
heave-optimized case has a unique maximum ~Pa as a function of damp-
ing, the pitch/surge-optimized case admits two local maxima of ~Pa; one
with relatively low, the other with relatively high damping ~C; compared
to the heave case (see Fig. 6).

This opens up the possibility that the overall optimal design may not
coincide with a design optimized for pitch/surge or heave alone, but
pitch under the design monochromatic wave. ~ζzj0: amplitude of the vertical displacement;
¼ 1; 2 correspond to the upper and lower cylinders, respectively.



Fig. 6. The captured power Pa of the WEC in the combined motions versus the damping
coefficient C. Thin line: q

U2=g ¼ 0:61; thick line: q
U2=g ¼ 0:97.
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occupying some middle ground. The performance of such intermediate
devices (Cases B, C, and D), as well as devices somewhat larger than Case
E (Cases F, G and H) is explored for the monochromatic design wave in
Table 3. In each of Cases B through H, a damping C has been chosen to
maximize the captured power.

Here we see that a shift in device size from the smaller, primarily
pitching/surging devices, towards larger, primarily heaving devices has a
positive impact on captured power, up to device E. Thereafter, an in-
crease in device size leads to a reduction in captured power, as the larger
devices operate preferentially at smaller wavenumbers.

This situation is depicted in Fig. 7, which shows ~P
�
a≡P�a=ðρU3Þ; the

dimensionless captured power per unit wave amplitude squared, where
P�a≡Pa=a20: To illustrate the associated displacements, Fig. 8 shows the
displacement in heave for the upper cylinder ζz10 divided by a0. Note that
for case A1, the maximum value of ζz10ðkÞ=aðkÞ is 4.4 (not shown).

5. Design of the WEC for a PM spectrum

Up to this point, we have considered WEC design for monochromatic
waves. In brief: a given wind speed U determines the two necessary pa-
rameters, wavenumber kp and amplitude a0 from (6). With a mono-
chromatic wave fully described by ðkp; a0Þ;wemay initially assume freely
floating cylinders, and choose their size ~q for maximum displacement in
pitch and surge (as these modes are coupled), for maximum displacement
in heave, or at some intermediate value. In each case, a damping ~C is
chosen to maximize the captured power for this incident design wave,
leading to the cases A1 through H above. As demonstrated in Figs. 7 and
8, the motions and performance of a device designed for a wave
Table 3
The size, damping, captured power and displacement of 3-mode WECs in monochromatic wave

Cases: A1 A2 B C

~q 0.61 0.61 0.70 0.79
~C 0.035 1.34 0.90 0.67
~Pa 0.0012 0.0013 0.0015 0.0021
~ζz10 0.11 0.089 0.093 0.11
~ζz20 0.036 0.053 0.033 0.026
~ζx10 0.12 0.063 0.060 0.055
~ζx20 0.018 0.016 0.015 0.013
θ10ðradÞ 0.70 0.041 0.052 0.069
θ20ðradÞ 0.028 0.031 0.021 0.014
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ðkp; a0ðkpÞÞ may change considerably for other waves.
For practical reasons, our primary interest must be focused on irreg-

ular waves, where wemay elect to tune the device to operate optimally at
the peak of the spectrum, but must consider its performance for a broad
band of incident waves. Under irregular waves it is no longer possible to
give a single value for the displacements of each floating cylinder. We
begin with some preliminaries regarding the behavior of the WEC in
irregular seas.

For a monochromatic wave, the absorbed power Pa (see (26)) and
displacements ζαj0 and θj0 are given by

Paðq;C; k; a0Þ≡a20P�
aðq;C; kÞ;

ζαj0ðq;C; k; a0Þ≡a0bAαjðq;C; kÞ;

θj0ðq;C; k; a0Þ≡a0bAyjðq;C; kÞ:

where j ¼ 1; 2 denotes the upper and lower cylinders, P�a is the absorbed

power per unit wave amplitude square, and bAαj with α 2 fx; y; zg denote
the relative amplitudes of surge, pitch and heave motions, respectively.
For a given spectrum SðkÞ the total absorbed power by a device of type
ðq;CÞ is

Ptotal
a ¼ ∫ ∞

0 2P
�
aðkÞSðkÞdk: (33)

Just as the spectrum describes the distribution of wave energy among
different frequencies, and allows for statistical inferences such as a
definition of the significant wave-height, so analogously wemay consider
a displacement spectrum

EαjðkÞ≡SðkÞ
�bAαj

�2
; (34)

and define the significant displacement by

H1=3
αj ¼ 4⋅

�
∫ ∞

0 EαjðkÞdk
�1=2

: (35)

Here Hð1=3Þ
α (α ¼ x; y; z) is the distance from the displacement's trough

to crest and

ζð1=3Þzj0 ¼ 1
2
Hð1=3Þ

zj ; (36)

ζð1=3Þxj0 ¼ 1
2
Hð1=3Þ

xj ; (37)

θð1=3Þj0 ¼ 1
2
Hð1=3Þ

yj ; (38)

are the so-called “significant amplitudes of the displacement” in z and x
directions, and the angle around the y axis, respectively.

Applying the concepts developed above to the problem of power
absorption from an incident, broad-banded sea, we evaluate the above
expressions for the spectra introduced in Section 2. The results are given
s.

D E F G H

0.88 0.97 1.06 1.15 1.24
0.51 0.34 0.56 1.09 1.91
0.0028 0.0035 0.0028 0.0020 0.0015
0.14 0.19 0.13 0.063 0.039
0.023 0.021 0.0097 0.0042 0.0031
0.050 0.048 0.047 0.040 0.038
0.012 0.011 0.0093 0.0069 0.0057
0.068 0.056 0.042 0.028 0.022
0.0094 0.0066 0.0051 0.0035 0.0027



Fig. 7. The dimensionless captured power per unit wave amplitude square P�
aðkÞ=ðρU3Þ under different monochromatic waves as a function of wavenumber.
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in nondimensional form in Table 4, which shows the captured power and
displacement amplitudes for the spectra Sd; Ss1 and Ss2; non-
dimensionalized by U ¼ Ud: This may be compared to the analogous
Table 3 for the monochromatic case. In the following section, we turn to a
discussion of these results.

6. Discussion

Numerous competing criteria exist in determining WEC size, of which
we shall consider only power capture, which naturally should be maxi-
mized, and survivability as assessed from the device motions. Note that
the Cases A1 through H above are ordered by increasing size qwhichmay
be assumed correlated to the cost per device, all other things being equal.
Due to the burgeoning state of wave energy technology, it seems pre-
mature to speculate any further about cost, given that it depends not only
on device size, but also design specifics such as materials and component
costs, as well as costs related to regular maintenance or major overhaul,
both factors which will in turn be affected by size.
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6.1. Power capture

The most straightforward metric to evaluate is the power captured by
a WEC. For a design PM spectrum Sd corresponding to a wind speed Ud ¼
10 m/s, and severe spectra Ss1 and Ss2 corresponding to Us1 ¼ 15 m/s
(energy density of 18.7 kJ/m2) and Us2 ¼ 20 m/s (energy density of
59.6 kJ/m2), respectively, the dimensional size, damping and absorbed
power of WECs A1 through H are presented in Table 5.

The picture which emerges from comparing the absorbed powers in
the monochromatic and spectral cases is quite striking. While the narrow-
banded response of device A1 (see Fig. 8(a)) yields a performance com-
parable to slightly larger devices for monochromatic waves, power ab-
sorption is dramatically lower for an incident PM spectrum. Likewise,
though the heave-optimized device E is clearly superior to devices of
similar size (D and F) for monochromatic waves, this situation sees a
dramatic reversal in the case of incident irregular waves. That devices
either larger or smaller than the heave-optimum outperform it for
irregular seas clearly demonstrates the pitfalls of a design based on
monochromatic waves.

Dimensional values of captured power are also provided for the two
severe spectra, Ss1 and Ss2: As expected, the larger devices benefit most



Fig. 8. The dimensionless displacement bAz1 ¼ ζz10=a0 of the upper cylinder in the combined motions under different monochromatic waves.(a)vertical displacement of cases A1, A2, B and
C; (b)vertical displacement of cases D, E, F, G and H.

Table 4
The dimensionless captured power ~P

total
a along with nondimensional significant amplitudes of displacement in heave ~ζ

ð1=3Þ
zj0 ; surge ~ζ

ð1=3Þ
xj0 ; and pitch θð1=3Þj0 (rad), for the WECs A1 through H

attacked by a design spectrum Sd; a severe spectrum Ss1 (Us1 ¼ 1:5Ud), and a second severe spectrum Ss2 (Us2 ¼ 2Ud).

Cases: A1 A2 B C D E F G H

~q 0.61 0.61 0.70 0.79 0.88 0.97 1.06 1.15 1.24
~C 0.035 1.34 0.90 0.67 0.51 0.34 0.56 1.09 1.91

Sd
~P
total
a

7:01� 10�5 0.00065 0.00081 0.0010 0.0011 0.0010 0.0011 0.00089 0.00086

~ζ
ð1=3Þ
z10

0.22 0.097 0.096 0.11 0.12 0.14 0.12 0.094 0.071

~ζ
ð1=3Þ
z20

0.044 0.065 0.040 0.030 0.027 0.025 0.021 0.017 0.013

~ζ
ð1=3Þ
x10

0.10 0.077 0.073 0.068 0.064 0.059 0.056 0.054 0.051

~ζ
ð1=3Þ
x20

0.022 0.019 0.018 0.016 0.015 0.014 0.012 0.011 0.0093

θð1=3Þ10
0.60 0.050 0.059 0.073 0.084 0.096 0.068 0.045 0.032

θð1=3Þ20
0.012 0.015 0.0093 0.0058 0.0039 0.0027 0.0020 0.0016 0.0012

Ss1
~P
total
a

0.00016 0.0025 0.0030 0.0037 0.0043 0.0046 0.0061 0.0060 0.0074

~ζ
ð1=3Þ
z10

0.37 0.31 0.29 0.29 0.32 0.35 0.34 0.31 0.29

~ζ
ð1=3Þ
z20

0.15 0.25 0.18 0.14 0.13 0.12 0.11 0.11 0.10

~ζ
ð1=3Þ
x10

0.25 0.21 0.22 0.21 0.21 0.21 0.20 0.19 0.19

~ζ
ð1=3Þ
x20

0.090 0.076 0.081 0.081 0.078 0.075 0.070 0.065 0.060

θð1=3Þ10
0.98 0.16 0.14 0.17 0.21 0.29 0.23 0.16 0.12

θð1=3Þ20
0.13 0.17 0.11 0.075 0.058 0.046 0.039 0.034 0.029

Ss2
~P
total
a

0.00019 0.0044 0.0049 0.0056 0.0064 0.0068 0.0097 0.011 0.014

~ζ
ð1=3Þ
z10

0.55 0.54 0.51 0.52 0.53 0.56 0.56 0.54 0.53

~ζ
ð1=3Þ
z20

0.34 0.47 0.39 0.33 0.30 0.29 0.28 0.27 0.27

~ζ
ð1=3Þ
x10

0.45 0.42 0.42 0.42 0.42 0.42 0.42 0.41 0.40

~ζ
ð1=3Þ
x20

0.20 0.19 0.19 0.20 0.20 0.19 0.19 0.18 0.17

θð1=3Þ10
1.07 0.317 0.21 0.22 0.27 0.37 0.31 0.24 0.19

θð1=3Þ20
0.31 0.40 0.25 0.18 0.14 0.12 0.10 0.088 0.077
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from this increased wave resource, while a sea composed of increasingly
long waves (λp for Ss1 is 217m, and for Ss2 is 385m, see Table 1) begins to
saturate the power capture capabilities of the smallest devices. In the
following sections on survivability and grading of WECs, we shall explore
the feasibility of operating WECs in such large sea states.
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6.2. Survivability

Assessing WEC survivability is less clear-cut than assessing power
capture. It is clear that WECs must be robust in design, as during a ten-
year operational period a converter may expect to encounter some tens
of millions of waves. During particularly severe sea-states, power pro-
duction will need to be halted in order to avoid damage to the device or



Table 5
Dimensional absorbed power Pa (Watt) for cases A1 through H, for an incoming monochromatic wave (Pma ) and the design PM spectrum with U ¼ 10 m/s (Pda), both with the same energy
density of 3:7 KJ=m2: Also given are the absorbed power for the severe spectra Ss1 (Ps1

a ) and Ss2 (Ps2
a ).

Cases: A1 A2 B C D E F G H

q [m] 6.2 6.2 7.1 8.1 9.0 9.9 10.8 11.4 12.7
C ð⋅105) [Ns/m] 0.364 14.0 9.37 6.98 5.31 3.54 5.83 11.3 19.9
Pma ð⋅105Þ [W] 1.25 1.35 1.56 2.19 2.92 3.64 2.92 2.08 1.56

Pdað⋅105Þ [W] 0.0730 0.672 0.849 1.04 1.14 1.06 1.17 0.931 0.893

Ps1a ð⋅105Þ [W] 0.165 2.65 3.13 3.80 4.43 4.77 6.36 6.27 7.73

Ps2a ð⋅105Þ [W] 0.197 4.62 5.09 5.88 6.67 7.10 10.1 11.0 15.0

Table 6
Relative heave displacements versus draft ζrz ¼ ðζð1=3Þz10 � ζð1=3Þz20 Þ=q, and relative pitch

displacement θr ¼ θð1=3Þ10 =ðπ=2Þ.

Entries marked red exceed the maximum allowed relative vertical travel of q/3, or the
maximum allowable pitch of 30�. Vertical travel between q/4 and q/3, or a pitch between
22.5� and 30� is marked orange, while a vertical travel between 0.15q and 0.25q, or a pitch
between 13.5� and 22.5� is marked yellow. Smaller device motions in both pitch and heave
are marked green.
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loss of station-keeping.
Other authors (e.g. Maisondieu (2015) or Brown et al. (2010)) have

imposed strict, ad-hoc cut-offs in Hð1=3Þ for a WEC to enter “survival
mode”. In contrast, we propose an example framework for survivability
for the twin-cylinder WEC in the three spectral sea states considered,
which is presented in Table 6. The maximum allowed relative vertical

travel ζð1=3Þz10 � ζð1=3Þz20 is limited to q=3;while the maximum allowable pitch
is 30∘: Those cases which exceed these values are marked red (PDF only).
A vertical travel between q=4 and q=3 or a pitch between 22:5∘ and 30∘ is
marked orange, while a vertical travel of between 0:15q and 0:25q or a
pitch between 13:5∘ and 22:5∘ is marked yellow (PDF only). Device
motions smaller than these are marked green (PDF only). Recall that
these nondimensional quantities depend only on the relations Us1 ¼
1:5⋅Ud and Us2 ¼ 2⋅Ud as specified in Section 2, and the concomitant
changes in significant wave-height and peak wavenumber.

For illustrative purposes, if the design spectrum Sd is generated by a
fresh breeze (Ud ¼ 10m=s; or 5 Beaufort, 2.47 m Hð1=3Þ), then the first
severe state Ss1 may be thought generated by a high wind (7 Beaufort,
5.5 m Hð1=3Þ). The second severe state Ss2 occurs under conditions be-
tween gale and severe gale (8–9 Beaufort, 9.9 m Hð1=3Þ). These extremely
harsh conditions represent an energy density more than 16 times that of
the design spectrum, andmay be expected to challenge the device design.
Note that the nondimensional form of the results allows for a free choice
of Ud depending on the conditions of interest.

While the increase in significant wave-height between the design
spectrum Sd and the severe case Ss2 may seem dramatic, there is no doubt
that such conditions will be encountered within the operational life of a
WEC. For example, while deep water conditions for the Eastern Medi-
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terranean off Israel's coasts may see significant wave heights greater than
2 m only 6% of the time, and wave heights in summer rarely exceed
1–1.5 m, nevertheless storms with Hð1=3Þ in excess of 5 m occur almost
yearly. The 10-year return period significant wave height is nearly 7 m,
which clearly falls within the expected operational life of a converter.

From a pure survivability standpoint, it is immediate only that the
smallest converter A1 is not viable. In particular, the very small damping
of this configuration (see Table 5), while allowing for efficient power
capture from the pitch mode, also leads to overly large displacements
even for design conditions. With survivability as the central aim of
design, larger structures will necessarily fare better, though the differ-
ences between devices D, E, and F are in practice rather small.

Ultimately, WEC survivability must be examined not just via linear
theory, but also take into account such highly nonlinear factors as wave
impacts on structures (see e.g. Akrish et al. (2016)). In addition, there is
some chance that survivability may be underestimated due to the neglect
of viscous terms in the equations of motion (see Cummins and Dias,
2017). Nevertheless, the present estimates of the significant displace-
ments give some initial indication of when a device should be forced to
cease normal power production.

6.3. Grading WEC sizes

We now make a preliminary attempt to sum up the results of the
preceding sections. The intricacies of WEC economics, as well as the
many factors which are outside the scope of the present study, such as
moorings, specifics of the PTO, control strategies, power conversion and
transmission, and other environmental factors from seasonal variability
to extreme events, will need to be taken into account for a fuller analysis.
For specific full-fledged designs, detailed information about performance
and survival may be sought through tank testing of scaled devices and
CFD simulations (see e.g. (G€oteman et al., 2015)). In addition, WEC cost
will be considered, and is likely to impact significantly the ulti-
mate design.

The lessons to be drawn from our comparison will likely change as
wave-power technology matures. In a parallel with the development of
wind power over the past four decades, current commercial and proto-
type oscillating-body WECs may be rather small, and situated in shallow
water with the intention of keeping costs down. It may be expected that
future developments will lead naturally to a move into the more powerful
wave-regimes further offshore (see Stiassnie et al. (2016) for a
discussion).

As an example, while there is a 15% reduction in absorbed power
between Case E and Case H (coincident with a 24% increase in radius q)
under the design spectrum, the corresponding increase in absorbed
power for severe case Ss2 is upwards of 60%. The fact that, off the Eastern
Mediterranean Coast, some 45% of average wave power comes during
storm events that occur only 5% of the time indicates the utility of the
larger design (Kroszynski and Stiassnie, 1979). This is compounded by
the increase in potential survivability of the larger devices as indicated in
the previous section. On the other hand, focusing on less frequent,
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high-energy sea-states may mean that the WEC is operating below ca-
pacity for significant portions of time.

Depending on the variability of the wave-energy resource, more or
less weight may ultimately be given to each of the considerations just
outlined. The fact that the larger devices exhibit smaller relative motions
may also be a benefit for their reliability, in terms of limiting loading
during normal operation. Ultimately, an effort will have to be made to
weigh the additional cost of a larger device against the increase in sur-
vivability. Both of these in turn will need to be weighed against the po-
tential of continuing operation during high-energy events, while
sustaining a slight performance decrease for low-energy sea states.

7. Conclusions

We have investigated in detail the hydrodynamics of a model WEC
consisting of two floating, axisymmetric cylinders connected at their
upper and lower perimeters by a continuously distributed damper –

allowing power capture from heave and pitch modes. The present work
addresses for the first time a twin cylinder WEC allowed to move in three
degrees of freedom. The inclusion of a floating, submerged cylinder as a
mechanical reference for power extractionmakes this design viable in the
deep water, which may be expected to become even more relevant with
the move to more energy-rich offshore environments (Stiassnie
et al., 2016).

Our design procedure initially focused on optimizing device behavior
in monochromatic waves. In the heave-only case, a device with size
parameter q and damping parameter C tuned to the resonant maximum
of a freely floating body outperformed all others. Allowing the device
also to surge and pitch was seen to introduce additional complexity, and a
differentiation was observed between devices operating preferentially in
pitch/surge and those operating preferentially in heave.

Despite the multiplicity of possible designs when the device is
allowed to undergo heave, surge, and pitch motions, the monochromatic
case presents a clear picture from the standpoint of power absorption: the
device closest to heave resonance is found to perform best. This
conclusion is an artifact of the idealization represented by the mono-
chromatic theory – a fact established by the subsequent investigation of
WEC performance under an irregular sea.

For our design purposes, a Pierson-Moskowitz spectrum, character-
ized by wind speed, was chosen to evaluate the designs obtained from the
monochromatic case. Under this spectrum, the maxima of absorbed
power were found to shift markedly with respect to the monochromatic
case, reflecting the need for separate design considerations for real sea
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states. Larger values of absorbed power under the design spectrum were
found for devices both slightly larger and slightly smaller than the
monochromatic optimum, raising the question of how to determine de-
vice sizing in light of other criteria.

To this end, we have devised some example metrics for grading the
sizes of our twin-cylinder WEC. We have presented an example approach
to quantitatively evaluate the competing aims of survivability and power
extraction within the framework of our floating twin-cylinder device.
This relies on a novel estimation of WEC displacements under irregular
seas, which we have termed “significant displacement,” and goes beyond
simply ceasing production for a certain significant wave-height. Here
such considerations are presented for the single WEC case, but as the
technology matures and large arrays of WECs become more practical,
their layouts will also be subjected to optimization for power capture (see
(McGuinness and Thomas, 2015, 2016; Fitzgerald and Thomas, 2007))
and potentially WEC survival as well.

To a certain extent all renewable energy technologies, WECs among
them, cannot control their operating conditions, but must work within
their environment, subject to the resulting fluctuations of the resource. It
must be expected that, like wind turbines, oscillating body WECs will be
designed with a “survival mode”, when normal operation cease, and the
device changes its characteristics in order to avoid extreme loads.
(Overtopping WECs or oscillating water-columns, due to a different
working principle and resulting size, will likely have a very different
survivability analysis than oscillating body designs.) This may mean
increasing the damping, altering the water plane area or mass (see
Stallard et al. (2009)), or other approaches (see Coe and Neary (2014)).
Due to the nascent state of commercial wave-energy technology, it is
difficult to offer concrete design recommendations based on the results
for floating twin-cylinders. Our discussion does bear out the fact that a
slight over-engineering may be preferable, given the large relative
contribution of infrequent, high-energy events to the annual energy
budget at many sites, and the demands of survival and robustness. We
believe these results to be applicable more broadly to oscillating-body
converters, constrained in size as they are by the incident wavelength,
indicated by the striking similarities in performance between our
twin-cylinder configuration and a single bottom-referenced cylinder.
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Appendix A. Comparison with previous results

In what follows, the results of using our methodology (as described in Section 3) are compared with published results by Garnaud and Mei (2010),
Zheng et al. (2005), and Berggren and Johansson (1992).

Appendix A.1. Comparison with single-cylinder results

In the limit of large cylinder spacing,H2≫H1; the lower cylinder will be expected to have only negligible effects on the motion of the upper cylinder.
Taking R ¼ H1 ¼ H3 ¼ 1:7 m and water depth h ¼ 10 m, with H2 ¼ 6 m reproduces the geometry considered in (Garnaud and Mei, 2010), where only a
single cylinder was employed. The comparison of capture width and the (upper) cylinder's displacement is given in Figure A.1



Fig. A.1. Comparison with Fig. 2 of (Garnaud and Mei, 2010) where R ¼ H1 ¼ H3 ¼ 1:7 m, H2 ¼ 6 m, and h ¼ 10 m. (a) Capture width. (b) Displacement of the upper cylinder.
Appendix A.2. Comparison with twin-cylinder results

Considering deep water, and restricting the motion to heave only allows a comparison with the work of Zheng et al. (2005) in Figure A.2 and
Berggren & Johansson (Berggren and Johansson, 1992) in Figure A.3, which also demonstrates very good agreement.
Fig. A.2. Comparison with Fig. 2 (a),(b) of Zheng et al. (2005), where B ¼ ρga0πR2, h ¼ 200m, R ¼ 40m, H1 ¼ H3 ¼ 20m, H2 ¼ 30m. (a) Exciting force fz1=B on upper cylinder. (b)
Exciting force fz2=B on lower cylinder.

Fig. A.3. Comparison with Fig. 4 (a),(b) (h2=h1 ¼ 0:15) of (Berggren and Johansson, 1992), h ¼ 200m, R ¼ 40m, H1 ¼ H3 ¼ 20m, H2 ¼ 30m. (a) Dimensionless added masses μ11; μ12 for
the upper cylinder. (b) Damping coefficients λ22; λ12 for the upper cylinder.
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