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1. — Introduction.

Our understanding of the nonlinear ‘dynamics of water waves has grown
substantially in recent years. To a large extent, this progress can be attributed
to applications of the so-called Zakharov integral equation, mainly by the group
associated with the TRW Fluid Mechanics Department. Most of their findings
were summarized in extensive review papers by YUEN and LAKE[1,Z2].
Zakharov equation was originally derived by ZAKHAROV [3] for infinitely deep
water. ZAKHAROV and KHARITONOV [4] extended the derivation to arbitrary
constant water depth, but did not present the interaction coefficients. In his
original paper ZAKHAROV [3] has shown that the nonlinear Schrédinger (NLS)
equation can be deduced from the Zakharov integral equation when a narrow
wave number spectrum is assumed. While the NLS equation served as a main
tool in obtaining valuable information about the instability, long-time evolution
and recurrence of weakly nonlinear wave trains, it is our opinion that the
Zakharov equation is superior to all other existing approximate models as far as
class-I interactions of wide spectrum are concerned.

The term «class I» interactions refers to nonlinear interaction processes at the
lowest possible order; for surface gravity waves this occurs at third order in the
small parameter of the problem e. Generally speaking, class-1 interactions
require the coexistence of resonating, or nearly resonating, wave quartets. The
time scale of class-I interactions is ¢2 P, where P is a typical wave period. The
dispersion relation of the surface gravity waves does not enable nonlinear
interactions at shorter time scales (¢7!P) which occur in many other physical
systems, e.g. capillary waves [5-8].

While class-I interactions are basically quartet, or four-wave interactions, the
special case where one of the waves, called the «carrier», is taken into account
twice so that only three waves are considered has attracted much attention.
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These cases, which lead to what is called Benjamin-Feir instability, display many
of the features of the more general quartet interactions. Interactions including a
smaller number of waves—as two waves each taken into account twice, or one
wave counted four times—are also possible, but display a degenerate type of
interaction which manifests itself in Stokes-type second-order corrections of the
frequency.

Numerical linear stability analysis of exact finite-amplitude Stokes wave, by
McLEAN]9, 10] as well as experimental evidence[11, 12] reveal the importance
of class-II interactions, which are basically quintet (five-wave) interactions.
These much less studied interactions occur at the fourth order of ¢ and have a
typical time scale ¢?P. Nevertheless, for high enough carrier steepness
McLean’s study, as well as the earlier work of Longuet-Higgins[13], show that
class-1I instabilities become dominant. Here again, three waves—earrier taken
into account three times and two additional «disturbances»—form a nearly
resonating quintet and display many interesting features.

The present lecture does not pretend to give a full picture regarding the
potential use of the Zakharov integral equation. Instead, we present here the
main results of our recent works. The modified Zakharov equation for arbitrary
water depth which allows one to analyse also the class II is derived in sect. 2.
This derivation, which follows the lines of ref.[2], is based on[14]. The analysis
of interactions of a degenerate problem, which includes two nonlinear wave
trains, is presented in sect. 3 and is based on the paper[15]. The linear stability
 of a uniform wave train to both class-I and class-II disturbances is investigated
in sect. 4 and is based on ref.[14]. In sect. 5 the long-time evolution of Stokes
waves is studied. The three-wave system is considered first. In this case for
class-I interactions an analytical solution for the recurrence period of the long-
time modulation is obtained, following[16]. The coupled evolution of the five-
wave system, which includes the most unstable disturbances of class-I and class-
IT interactions, is then considered, as reported in[17]. Note that, since the
interaction coefficients involved are very cumbersome, we do not present their
exact form in the present lecture and address the reader to the appendices of
ref. [14, 17]. In the last section we discuss the advantages and disadvantages of
the Zakharov equation approach as compared to the alternative nonlinear
models, and suggest some possible additional applications.

2. — Derivation of the modified Zakharov equation.
The Laplace equation
2.1 Vig=0 (—h<z<y,1t)

describes the irrotational flow of an incompressible inviscid fluid, where ¢ is the
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velocity potential, » and % are the locations of the free surface and the bottom,

respectively, and the vertical coordinate z is pointing upward. The horizontal

coordinates are (v, %) =x, and ¢ is the time. The governing equation (1) is

subject to the kinematic and the dynamic boundary conditions at the free surface
= n(x, 1)

(22@) 7t + (V<,’5) ) (VY}) - ¢z =0 ’
2.26) o+ %(w)z +g2=0.

The boundary condition at the bottom z= — % is
2.3) ¢, =0.

/)

The boundary conditions (2.2) are rewritten in terms of the velocity potential at
the free surface, ¢°, and the vertical velocity component at the free surface, w*:

(24&) N+ (Vx ¢S) : (Vcc 7}) — P [1 + (Vx 77)2] =0 s
(2.4) 8+ g7+ 2 (T8 — V2R [L + (V, 7)1 =0,

where V, = (3/3x,) ¢ + (3/3%) ] is the horizontal operator and g is the acceleration
of gravity. The horizontal Fourier transform of egs. (2.4) yields

@50) 7k, )= 5= [ [ Gy k) § G, 007 (ke 1) 00k — ey — Ky ke, ey — 17 +

L[] e by G, 1) G, 197 G ) 20 — e — ke, — ) ke, e,y = 0,
@y =

@:5h) 1k, )+ g7 (k) — 2= | [ Chy k) 8 (s, 003k, 1) Xk — e — ) by e, —

~1 | f W Uy, ) ° (s, £) 80k — key — ki) ey +
1z))

1

+
1672

[I]] s ke Gty s, 07, 2K, -
-8(k — ky — ky— k3 — ky) dk, dk, dk; dk, =0,

where the two-dimensional Fourier transform of a function flx) is given by

Fiky=5- [ fAxyexpl—ik-x]d,
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the Dirac &function is defined as

©

f exp [tk - x]dx

o

1

W =Gy

and use is made of the convolution and differentiation theorems for the Fourier
transform.
The Fourier transform of the Laplace equation (2.1) gives

3¢k, z,t)

7 +k-k¢lk,z,t)=0,
which together with the boundary condition at the bottom (2.3) yields
(2.6) é(k, 2, t) = O(k, t) cosh (|k|(z + 1))

/
Opening the brackets in (2.6), substituting z = y(x, ) and taking the inverse
Fourier transform gives for the velocity potential at the free surface ¢°(x,t)

@70) &, t)=—21; | Bk, ) Teosh ({h) cosh (o, 1) +
+ sinh (|k|h) sinh (| k|5(x, £)] exp [ik - x] dk .

In a similar way, differentiating (2.6) with respect to z, we obtain for the vertical
velocity at the free surface

(2.7b) ws(x,t)=51; f Ik]é(k,t)[cosh(lklh)sinh(]kh(x, )+ -
- + sinh (k| cosh ([k|nCe, £))] exp [ik - x] dk .

In the sequel, ¢* and 7 serve as independent variables. The vertical velocity #°
has, therefore, to be expressed as a function of these variables. We make here an
additional physical assumption that the wave steepness is small, i.e.|k|n = o(1).
This assumption allows us to expand all functions of |k|y in (2.7a), (2.7b) in the
Taylor series up to the order (|k|n)?®. The surface elevation n(x,t) can be
expressed in (2.7a), (2.7b) by its inverse Fourier transform: '

1, )= [ ik, ¢) explik - x]dk.
o J

Finally, the Fourier transform of (2.7a), (2.7b) yields
(2.8a)  ¢°(k,t) = &(k, t) cosh (|k|h) +

“%f f |k,| sinh ([, |R) O(ky, ) (ks £) 8k — Ky — k) dk, Ak, +
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i | 31k cosh i e, 050k, ks, 1)

8k — ky — ky — k;) dk, dk, dks +

+ (2717)3 [J]] % ol sinb sy ks, 07k, 05k, £, 8-
0k — Ky — ky — ks — k) dk, dbey dke,

(2.8b)  W*(k,t) = |k|O(k, t) sinh(|k|h) +

2| [ el cosh (Rl Bks, 0)70ks, 66k — ke, — ko) ke, ke, +

(271_)2 fff %"klig sinh (’k1|h) Qg(kl) t) ﬁ(kZ; t) ﬁ(k37 t) a(k - kl - k2 - k3) dkl dkz dkg +

+ o) | et cosh (G 1y s, )5k, s, 07K, 1)
* S(k - k1 - k2 - k3 - k4) dk1 dk2 dk3 dk4 .

Inverting (2.8a) iteratively, we obtain the dependence of ®(k) on the
independent variable ¢

& k,t)
cosh (|k|h)

1
~ cosh ([k|h) 2=

(k) =

o) f sl Gk, ), 1)t (s ) O — ey — ) ke, e, —

LA
cosh (Ik‘h) (2r)? fff [2|k1f _

—tgh([kilh) - (| — ksf - tgh (K — Kelh) + [k — ky| - tgh (K — ks|R) +
+ |y + ko - tgh ([Fey + Kolh) + [k + kes| - tgh (Ko + sl )] 8 Ky, 8) 7K, £) (ks ) -
8(k — ky — ko — ky) dk, dk, dks —

1 L2
cosh(!k]h) (2,;)3f f f f { t h<|kllh>~—lkll ~tgh (ki| k) - |k + kof? —

) Ik — k| - tgh (|k - ko|h) - |Fey| |y | — tgh (k] )] - (k1 + k3| - tgh ([ky + kslh) +

+ ki + k- tgh (K, + k4|h)]} :

* q@s (kly t) ‘;]\(kg, t) ﬁ(k37 t) ﬁ(k47 t) a(k - kl - k2 - k3 - k4) dk1 dkz dk3 dk4 .
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Substituting this result into (2.8b) yields
@.9) (k1) = k| tgh(klh) ¢ (k, D) —

— L[] Ve 1 g (Ll s () k13 G, 85, -

- ok - mkl ~ ky) dk; dk, —

- (21)2 | j f SOk, Ky, ks, ki) & (ks 1) ks, 8) s, )

* é‘(k - kl - k2 - k3) dkl dk2 dkg -

1
(2n)?

[T]] 82, e, o, o, B 8y, £, 8, 1) s, )
h 8k — Ky — Feo — Koy — ki) ke, Ay dles Ak,

/

The kernels S¥ and S®, as well as other kernels which appear throughout the
derivation, are given in ref. [14].

The vertical velocity at the free surface w®, given by (2.9), is now substituted
“into (2.5a), (2.50), so that the terms up to the 4th order of magnitude are
retained. In this manner equations are obtained which include only ¢* and # as
the variables. We multiply (2.5a) by [¢/2(k)]¥% and (2.5b) by 1[w(k)/2g1"2, where
the wave frequency o is related to the wave number by the dispersion relation

(2.10) w(k) = [g|k| tgh (k|[m)2,

Combining these equations yields for a new complex variable

1/2 1/2
2.11) b(k,t>=< g > ﬁ(k,t)+i<w(k)> &k, b);

20:(k) 29

the following equation is obtained:

2.12) b.(k,t) +1w(k) bk, t) +1 f f VO (k, ky, ko) bk, t) bks, t) -
' é\(k - k1 - kz) dkl dkz + _
i [ [ VO, ki, ko) b¥Ck, 0) DGk, 1) 3Gk + Ky — k) Ay Ay +

—a0

te f f VO (k, ky, ko) b*(k,, t) b*(ky, t) 8(k + ky + k) dk, dk, +

-H'J'”' WOk, ky, ks, ks) b(ky, ) b(ks, t) b(ks, t) 6k — ki — ko~ ks) dk; Ak, dks+
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+i [ [ [ WOk, Ry, ke, ko) b5, ) bk, 0) B, 6) 30k + Ky — Ky — i) Ay b ey

+if| f W (k, ky, Ky, ks) bk, ) bk, ) by, 1) -

S+ eyt e — )y Ay +

+if] f W (k, Ky, ks, keg) b*(hy, £) bk, ) by, 1) -

o+ Ry + eyt ) Ak, d+

+iff] fX(D (ky By, b, K, Keg) bRy, 0) bk, €) b, 8) by , 1) -

o0 — Ky — b ey — k) ey eyl ey +

wif[] f XO(k, ki, Ko, ks, k) 0%(hy, ©) bk, £) bk, 1) bk, ) -

o+ Ky — by by — by ke, Qe ey, +

+if[] f XO(k, ki, ks, ks, ko) b5 (ky, £) 0%, 8) bk, 8) by, 1) -

k4 k4 e Ko — k) s dky Ak, dk, +

+if[] fX“) (ky Ky, Ko, Ko, K b5 (ky, ) By, £) 5%, 2) bk, )

o+ R+ kot ey ) ke, ek, dk, +

+if[] fX@ (K, Ky, Ko, s, Ko 0%k, 8) (g, £) Gk, 1) bRy, 1) -
- 3k + Ky + Ky + Ky + k) ke, dkey Ay ks

where * denotes the complex conjugate.

The relations between 7, ¢° and the complex «amplitude spectrum» b are
obtained from (2.11) and its complex conjugate:

(2.130) 2k, ) = /%k—)- [b(k, ) + b* (— k, D)],
s N _pE(—
(2.13b) Sk, t) = n/2w(k)[b(k,t) b*(— k, 1)].

Equation (2.12) is an «exact» equation up to the 4th order in the small
parameter of the problem, |k|y. Its complexity, however, prevents one from
using it in practice in most cases. We, therefore, have to use a multiple-scale
approach assuming that the wave field can be divided in a slowly varying in time
component B and small but rapidly bound components B’, B”, B” and that most
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of the energy in the wave field is contained in B. These assumptions permit us to
write

(2.14) bk, t)=
=[eB(k, by, ts) + & B'(k, t, by, ) + & Bk, t, 1z, ta) + B (K, 1, by, ta)] exp[—iw(k) 1],

where ¢ is the small parameter of the problem, and the slow time scales are
defined by t, = ¢*¢, t; = ¢*¢. Note that the slow time ¢, = ¢t is omitted from (2.14).
This results from the fact that no resonant interactions of three waves, which
would occur at the typical time scale ¢;, are possible for surface gravity waves as
long as capillary effects are neglected. A modification of the derivation which
takes capillarity into account is presented in ref. [5].

Substituting b(k, ?) from (2.14) into (2.12) and separating the terms according
to their order in ¢ yields the following results.

Order ¢ is satisfied identically.

Order ¢* gives the following equation for B':

(2 150’) IL'%B;‘ = [f [Vgl,)l,ZEI Ez 30_1_2 exp [’L(w — W — (.1)2) t] -+
+ V2B Babosi—oexp [i(w + wy — wp) ]+

+ VB8 Bf dysrsz explilo + oy + wp) t]] dk, ks,

where a compact notation was introduced, in which the arguments k; of all
functions are replaced by subscripts ¢, with the subscript zero assigned to k.
Integrating (2.15a) with respect to ¢, while keeping ¢, and t; constant, gives

exp [Z(O) —wy;— (1)2) t] n
W — Wy — o

(2.150) B'= _JJ {V 1,)1,2§1§2 So-1-2

= T exp (o + w; —wy) t
+ V& 2 BF B2 Sys1-2 plilet wZ)]+

W+ w; — wo

o exp [Hw + w; + ws) t]
+ VP, BEBf Syryg bt T AT O

] dk, dk;.

w+ w;+ wy

It was tacitly assumed here that all the exponents in (2.15) differ from zero under
the constraints of the corresponding é-functions. This assumption fails if, instead
of the dispersion relation (2.10), the relation ®=g|k|+ o|k|?, where ¢ is the
coefficient of surface tension, is adopted. In this case resonant interactions of
three waves are possible and an appropriate modification of (2.14) and (2.15) is
required [5]. These extremely short waves are not considered here. The constant
of integration in (2.15b) corresponds to the initial phase and has been set to zero.
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At order ¢ of (2.12) the following equation is obtained:

(2.16) ___{_%S_B__ fjf {To 12, 331E2§330—1—2—39Xp [ — w1 — wp — wz) ] +

+ ’115)2,)1,2,331k By By8y11-5-3Xp [ + w — wp — wg) 1] +

+ Tg%)l,z,sgik B% By8y1145-3 exp [1(o + w; + wy — wg) t] +

+ Tgf)l,z,sgik Bj E? So+1+2+3€XD [Uw + w1 + wo + wy) ]} dk, dky dks.
Equation (2.16) consists of terms of two types: those that depend on the fast time

¢t and those that depend only on the slow times. This enables to split (2.16) into

two separate equations, one representing the dependence on slow time scale:
/

(217) 7/_ ffj TS ;;,Bik Ezgg 30+1_2-3 exp [’L(O) + w; — wy — wg) t] dkl dk2 dkg s
oty

and the 2nd, giving the behaviour on the fast time ¢

(2.18a) l* fjf {T 12331323330 1-2-3€XP [1(w — w1 — wp — wy) ] +

+ (TB 1,28 T321 2, 3)Bik§2§3 So+1-2-3€XP [Uw + w1 — wp — wy) t] +
+ T 1,2, 3B*Bz Bs 8o+1+2-3 €XP [Z(w + w; + wp — wy) T] +

+ T§)4,1,2,3Bil< Bz B3‘ So+14243€XP [Uw + w1 + wp + wy) t]} dk, dk, dk;.

The term with T® obtained here special treatment, since its exponent may
become close to zero under the constraints imposed by the é-function. We,
therefore, distinguish between the nearly resonating quartets, defined by

(2.19@,6) k+k1_k2*k3=0, lw+w1—w2—wg|$0(82),

for which (2.17) is the so-called Zakharov equation, used as the mathematical
model for the so-called class-1, or quartet, resonant interactions. The kernel 7@
of (2 17) is defined as follows:

T6 1,2,3 5 for nearly resonating quartets defined by (2.19),
(2.20) TP ps=
0, otherwise .

Equation (2.18a) can now be integrated with respect to ¢, so that B” can be
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obtained and used at the next order:

L o
ey B[] {Té%’l,z,gBleBsao_l_z_geXpM‘" S L

W W) T We T g

exp [Hw + w; — ws — wg) t] N

+ (Téz,)l,z,s —T® 22 E?‘Ezgs So+1-2-3

w+w1*w2—w3

+T%)1,2,3BiﬁB§(B3é\0+1+2_3 p[< 1 2 3 N

w+ w;+ wy— ws

exp [w + w; + wy + ws) ]

+ TS%)1,2,3§§F E? E? é\0-1--14-241-3 } dkl dk2 dk3 .

wtw tw+tws

When, (2.15b) and (2.18b) are substituted into (2.12), the following equation is
obtained at the fourth order in e:

2.21a) ;9B ,;3B"__ .3B

= +
ot | ot e

+ [UBI,)l,z, 3,4E1§2§3§4 So-1-2-3-1€Xp [ — w; — wp — w3 — w) t] +

+ ﬁsz,)l,z, 3,4§il< §2E3 E4 So+1-2-3-2€XP [ + w1 — wg — wy — wy) ] +
+ ﬁé%)1,2,3,4§?< Eék E’s Ex So+142-3-2€XP [Uw + w1 + we — wg — wy) t] +
+ ’[73%)1,2,3,4§ik B3 Eék E4 So+1+2+3-4€XP [ + w1 + wp + w3 — wy) T +

+ U1 25,487 Bf Bf Bf 841424344 €XP [ + w1 + wp + wg + wg) t] dky dk, dkey dk, .

Equation (2.21a), again, contains terms which depend on the fast time ¢ only,
which give an equation for 3B"/3t, and is irrelevant as long as only quintet
interactions are concerned. Only the 2nd and the 3rd integrands in (2.21a) enable
resonant quintets and thus describe the interactions on the slow time scale ;.
These resonant quintets represent the so-called class-II interactions and are
defined similarly to (2.19):

(2.22@, b) k+k1 _'.kg_kg"“k,;:o, IQ +91_Q2_Q3_Q4|$O(€3),

where Q; are the «Stokes corrected» frequencies, defined by

@

(2.226) Qj = wj + €2 €1 lejl ‘Ellzdkl ,

00

where ¢;; equals 1 for j =1 and 2 otherwise. The frequency corrections given by
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(2.22c) will be explained in the next section. These corrections become necessary
at the order of derivation considered here. Similarly to (2.20), we now define

' U 234, for nearly resonating quintets,

(2.230) U 254=
0, otherwise;;
U 6.1,2,3,4 for nearly resonating quintets,

(2.23b) Ug’:)w, 3,4 =
0, otherwise .

The part of (2.21a) representing slow time modulations is

3B _
(22/4) 7,-6% =

“jjjj [U5123 E E 45\0+1 2-3-4€XP [Uw + w1 — wp — w3 — wy) t] +
+ U254 +B§ B B; B, So+1+2-3-4€XP [Uw + w1 + wp — w3 — wy) t]] dk; dk, dks dk, .
Finally, combining (2.17) and (2.24) into a single equation for B =B,

(2.25) 7,‘—' fJ’j TSZ 1,2, 3Bik Bng 30_;.1_2_3 exXp [7,((1) + w; — wp — C1)3) t] dkl dk2 dkg +
+ffff U, 2,34 BY By Bs Bydyi1-9-3-4€xp [l + w1 — wp — w3 — w)) t] +

+Jfff U 2,3 4BF Bf BsBydoi140-3-4-

‘ eXp [?,(CU + (af] + W9 — (g — (,04) t] dkl dk2 dkg dk4 .

The first line of (2.25) is the original Zakharov equation, and is identical to (2.17).
The full equation (2.25) is the modification of the Zakharov equation (2.17) which
includes the possibility of higher-order interactions.

Integration of (2.21a) for nonresonating quintets yields, similarly to (2.18b),

(2.216) B"=

exp [i(w — w; — wy — ws — )t]
=*IJH’[U°1234BBZB3B4301234 Pllw 7o 7 wp 7 w3~ oy

W™ W] T Wy T W3 T Wy

exp ['L((L) + w; — Wy — g — (1)4) t]

+ (US 125,40~ ULz o) B¥ E2E3§430+1—2—3—4

W+ W — W — w3~ wy
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exp [Hw + w1 + ws — w3 — wy) ]

+ (UB%)1,2,3,4 - Ug,’)l,z, 5,0) Bf Bf B3 By ys142-3-4

wt wt+ we— w3 — wy

= = =, == eXp[’i(w+w1+w2+w3—w4)t]
+ UB%)1,2,3,4BEK BikBﬁk B4<5\o+1+2+3—4 +

w+a)1+a)2+w3—w4

= e exp [Uw + wy + ws + w3 + wy) £]
+ U 2,3,4 B¥ B Bf Bf So11424344 )
w T wy+ we + w3+ wy

* dkl dkg dk3 dk4 .

Equation (2.216) will be employed in sect. 5 in the analysis of the wave field
energy in the process of long-time modulation.

3. — Interaction of two wave trains.
/

The Zakharov equation is most effective when applied to a wave field with a
discrete wave number spectrum. In the present section we deal with the
simplest possible nontrivial nonlinear wave interactions, i.e. the interaction of
two wave trains, denoted by 1 and 2. It can be easily seen that only resonating
quartets, satisfying (2.19) with the equal sign, can be constructed from two
different wave numbers k, and k,. No resonant quintet (class IT) interactions, as
defined by (2.22), are possible. Equation (2.17) which describes the class-I
(quartet) interactions is, therefore, used in the present section. Thus we take

(3.1) Bk,t)=B,(t)8(k — k) + B; (t) 8k — k) .

Substituting (3.1) into (2.17) gives

. . dB

(3.2a) 1 T, T®.1:|Bif*B; + [TP,1,0+ T 2 11|Bef* By
and

(3.2b) 2.2 |Bal? By + (TP 5, + TP, 1,2]|B1*Bs.

dt

The kernel T is a real function of its variables and is symmetrical with respect
to the last pair of arguments. For strict resonance conditions, 7.e. when
inequality in (2.19) is replaced by the equal sign, T® is also symmetrical in its
first two arguments. We can, therefore, denote T =T 11, Te=T8% 5 2 and
T12*T1212_Tf)221_'T§2112_ 5121

The solution of the pair of ordinary differential equations (3.2) is given by

(3.3) By (t) = Ayexp[— (T, A2 + 2T, , AD 1],
(3.3) By (8) = Azexp[— U(T, A3 + 2T, AD 1],
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where A; and A, are constants. We now substitute (3.3) into (3.1) and the result
into (2.13a). Taking the inverse Fourier transform of the latter yields the result
which can be presented in the following form:

3.4) n(x, 1) =a,cos (k- x— Q1) + ascos (ky - x — Qyt) ,

where the wave amplitudes a, and a, are related to the constants A; and A, by

(35) Ai=27r(wi/2|ki')1/2ai, 1= 1,2,

and the frequencies of the wave trains are

(3.60) Q)= oy + Ty A2+ 2T, A3
and '
(3.60) Qo=wy+ Ty A%+ 2T1,2A“f.

The «Stokes correction» (2.22) used in the derivation of the modified Zakharov
equation is a straightforward generalization of (3.6). The second correction term
in (3.6a), 2T, A, represents the nonlinear influence of the second wave train on
the first one. The first term T, A appears even when the amplitude of the second
wave train a, vanishes and is identical to the well-known Stokes correction to the
frequency of the nonlinear wave train. It can be easily shown, indeed[14], that
for the deep-water case
12,0 =2

AT g2

Substituting this and (3.5) into (3.6a) and letting A, =0 yields
Q] = W (1 + ‘21— lk1|2a%>

in agreement with the correction to the wave frequency due to nonlinearity [18].

The nonlinear frequency corrections due to the wave train itself and due to
the existence of another wave train are of the same order, provided both wave
trains have the same order of amplitude. The phase speed of the i-th wave train
is given by ¢;=Q;/|k;|. The change of the phase speed of the weakly nonlinear
wave train 2 due to the presence of wave train 1, Acy, 1s given by

o =+ TgA% _ 2T1’2A%

3.7 Acy = ¢y — I, = %)

38 - Rendiconti S.I.F. - CIX
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Using (3.5), this becomes

4772 (O3}

(38) ACZ =m

2
T1,2 as.

The change in the phase velocity of the 2nd wave train depends, therefore, only
on the interaction coefficient T’ , and is independent of the amplitude of the wave
train, a,. For gravity waves in water of infinite depth this result was first
obtained in ref.[19]. HOGAN et al.[15] have shown that (3.8) is valid also for
gravity-capillary waves.

4. — Linear stability of a wave train.

In the previous section it was shown that the only effect of the nonlinear
interaction of two wave trains is the effective shift in the frequency and thus a
variation in the phase speed. We now make an additional step and consider the
next possible simplest problem, which includes nonlinear interaction of three
waves. It appears that three waves is the minimum number necessary to enable
significant nonlinear interaction, i.e. change in wave amplitudes, for both class I
and class II. For anything exciting to happen, these waves have to form nearly
resonating quartet, see (2.19), for class-I interactions, and nearly resonating
quintet (2.22), for class-II interactions. In order to get a quartet or a quintet out
of three waves, we will count one of them, k,, which will be called the «carrier»,
twice or three times, respectively. Two additional waves will be denoted by
subscripts ; and ,. Thus the relations between the wave numbers are

(4.1a) 2ky=k, + ks for class-I interactions
and
(4.1d) 3ko=k,+k, for class-II interactions .

The governing equations for class-I interactions in the three-wave world have
the following discretized form:

.dB
4.2a) Z—dt_o = (T,0,0,0 \Bo|% + 2T, 1,01 |B,J? + 2T, 202 |B;|%) By +

+ 27,01, B§ By Baexp [0 t],

.dB
(4.2b) l—d—tl_ = (27T",0,1,0|Bol? + Ty10,1 By + 2T 21,2 |B2|?) B, +

+ T 50,0 BF Biexp [— i t],
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dB
(4.2¢) 1—3— (2T, 0,9,0|Bof* + 2T, 1 2,1 | B> + T 5, 2,2 |Bal®) By +
+ T2,1,0,OB§<B%eXp[“ W t],
where
(4.2d) Q1 =2wp — w1 — ws = O(?).

For the interactions of three waves that do not satisfy (4.1a) and satisfy
(4.1b), the discretized form of (2.25) gives

dB
(4.3a) 7«—2 = (To 0,0,0 |Bo| + 2To 1,0,1 IBl|2 + 2To 2,0,2 |Bz} ) By +

’ +2U8), ,1,2B§ 2B, Byexp [iQn 1],

.dB
(4.3b) 1@‘1‘ =2T0,1,0 |Bol? + IERER! |B,)?+ 2T 212 |By|®) By +

+ U, 0,0,0BF Biexp[—iQnt],

.dB
(4.3¢) 1d_t2 = (2T%,0.2,0|Bol* +2T2 1,21 |B1|* + T,2,2,2 |Bal®) By +

+ U\ o,0,0BF Biexp[—iQut],
where
(4.3d) QII - 3(1)0 W] T W = 0(83) .

Note that superscript 2 has been omitted in 7@ for the sake of brevity.
To complete the formulation of the mathematical problem represented by the
system of the ODE (4.2) or (4.3), we specify the initial conditions

(4.4) Bo 0)= bo, Bl 0= bl; B, (O) = bz ’

where the relation between B; and the actual wave amplitude a; is obtained from

(3.5):
1 w; 12
ai <2g> 'Bll ¢

For the study of the linear stability of a wave train, we assume that the initial
amplitude of the carrier, by, is much larger than those of the two other waves,
which will be called «disturbances». In the following short-time analysis, only
linear terms in the disturbances are retained, so that the carrier wave is
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unaffected by them and is obtained by solving the linearized equation (4.2a) or
(4.3a):

Bo=1b,-exp[— Z'To,o,o,o b% tl,
where b, is assumed to be real without loss of generality.

4'1. Class-1 instabilities. — We express the wave numbers of the carrier and
of the disturbances satisfying (4.1a) in the following form:

(4.5) ko=£Q1,0), ki=kd+p,q, k=kl-p,—-0q.

The linearized version of (4.20), (4.2¢) is

’ _dB , _

(4.6(]/) /Lwl- = 2T1’0,1]0 bgBl + Tl’z’o’oBgc b% exp ["‘ ’LQI t] s
. 4B, 2 % 12 'O

(4.6b) 'LW = 2T2’0’2’0 boBg + T2,1,0,0B1 boeXp [_ ’I/QI t],

where 5[ = 'QI + 2T0, 0,0,0 b% .
Looking for solution of (4.6) in the form

B, =b, exp[—i(0.5Q;+8)t], Bo=by-exp[—i(0.50;~3d)t],
one can show that ¢ is given by
4.7) &= (Ty0,1,0— Ts0.20 bs+ Di?,
where the discriminant of the 2nd-order algebraic equation D; is given by
(4.8) Dy =[0.50;— (T1,0,10+ T2,020 b812— T1.5,00T21.0,0 0%

Positive values of D;(p, ¢) correspond to stability regions in the (p, ¢)-plane and
vice versa. The curves Di(p, q) = 0 form the stability boundaries, and the values
of p and g where D; attains its minimum define the wave number of the most
unstable mode. The value of o; = (— D;/gk)"* for most unstable mode represents
the maximum growth rate.

4'2. Class-1I instabilities. — For this case (4.5) is replaced by

(4.9) ko=k(1,0), ki=k(d+p,@, k=k2-p,—q)
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and (4.6) by
.dB, ) ® .S ~
(4.10a) 1_d£—= 2T 0,1,005B1+ Utk 00,085 b3 exp[— 12y t],
.dB, ) 2 3 =
(4.1056) %—E=2T2,0,2,0 b§ By + UP 0,0BF b§ exp[— 10y ],

where 511 = Qi+ 37 00,005 Assuming again that solution has the form of
Bl = bl - eXp [—‘ 7/(05511 + O“II) t] y Bz = bz - exp [— 2(055[1 - 311) t] ,
one finds that

(4-11) é\11:(’*711,0,1,0—112,0,2,0) b%i‘Dﬂz,

4.12) Dy = [0-5511 - (TI,O, 0t Ts0,2,0 b§1* — Uf,%,o,o,o UZ(,Z)I,O,O,O bs.

The stability boundaries, the most unstable mode and the maximum growth rate
are obtained from (4.12).

4'3. Stability regions. — The instability regions for class-I and class-II
interactions for intermediate water depth (kh = 2) are shown in fig. 1 as shaded
zones. The solid lines present the calculated results and the dashed lines are
those of McLean[10]. In fig. la), aok=0.195 where «, is the first-order
amplitude of the carrier wave in the Stokes expansion, which corresponds to
(ka)y = 0.2 in the calculations of McLean (subscript M stands for McLean). In
fig. 1b), agk =0.326 (corresponding to (ka)y = 0.35).

The locations of the maximum growth rates (p;, ¢1) for class-1, and (py, ¢ for
class-II instabilities, are marked by X for our results and by dots for McLean’s
results, and their values, as well as the values of the corresponding maximum
growth rates, o and oy, are given in the figures. The overall agreement in fig.
la) is quite satisfactory. The wave amplitude in this case constitutes 47% of the
theoretical maximum [20]. For less steep waves, the agreement with McLean’s
results is even better. For very steep waves (the amplitude in fig. 1b) is 82% of
the theoretical maximum value), however, the agreement is less impressive.
When our results for a,k=0.41 are compared with McLean’s results for
(ka)y = 0.35, the agreement becomes somewhat better. Similar trend in the
degree of agreement between the results of McLean[10] and those of ref. [14]
model was obtained for several other water depths. Generally speaking, the
ref. [14] model gives good quantitative results for amplitudes which do not
exceed about one-half of the theoretical maximum. For steeper waves the model
still predicts correctly the general qualitative features.
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Some of these general features are demonstrated in fig. 2, which is also used
to clarify the terminology. Both class-I and class-II instability regions can be
regarded as consisting of two domains: a wider band at lower values of p and a
usually much narrower band at higher values of p. The first region will be
referred to as the main region, and the other as the secondary instability region,

p1=053, =024, 0=0943-102 | ‘ ]

T
>
>

A:
g < kg
o5l B PISLIA, gi=0,  o=0354-107
’ C: pu=05, gu=046, oy=0.945-10"2 class 11
D: ph=2321, gh=0, o}=0462-10"2 =
0.50 |- : N .
C % %
L k T
0.25 1 5 class 1 k .
ki s k \
I - L o 4B ! \
-1.0 -0.5 0 0.5 1.0 1.5 20 p 25

/

Fig. 2. — Bands of instability for k% =0.35, ayk = 0.04 and notation.

The difference between class-I and class-II instability regions is that for class I
both domains are usually disconnected, while for class II they are bound by a line
of infinitesimal thickness. The secondary regions sometimes disappear
completely, and, for class I, the instability region in these cases terminates at
some ¢>0. This is similar to the pattern obtained at infinite water depth [21].

The disconnection between the main and the secondary regions for class I, as
well as the disappearance of the secondary region in some cases of class-II
interactions, were not observed by MCLEAN [9, 10], who solved numerically the
full inviscid equations, and, therefore, can possibly be a result of the order of the
present perturbation expansion.

Figure 2 shows the three wave number vectors ko, k, and k,, which form the
wave field, as well as the locations of four points of local maximum growth rates:

A, class-I point (pr, qr) with local maximum growth rate o1}
B, the secondary class-I point (9%, ¢}) with local maximum growth rate of;
C, class-II point (pyr, gy) with local maximum growth rate orr;

D, the secondary class-II point (pj;, ¢%) with local maximum growth rate of;.

For the particular case presented in fig. 2 (kh= 0.35, agk =0.04)
oy > 01> o1 > ot . These inequalities are by no means general, as will be shown in
the sequel. In most cases, however, o> of;.

Figure 3 is the summary of the results for class-I instabilities. Figures 3a), b)
give the values of p; and ¢y, respectively, as functions of the water depth ki (the
range covered is 0.35<kh< ), and the wave steepness ¢* as defined by
COKELET[20] and denoted here <% (the range 0 < 2 <0.7 is covered). Figure 3¢)
is a plot of the maximum growth rate o = max (o7, o%). Note that for the region
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! |
0.4 0.5 0.6 0.7 0.8 0.9 1.0
tgh (k h)

Fig. 3. — Summary of results for class-I instabilities: a) isolines of P1, b) isolines of ¢q, ¢)
isolines of 10s¥, the maximum growth rate. ‘



THE ZAKHAROV AND MODIFIED ZAKHAROV EQUATIONS ETC. 601

confined by the broken lines o$ > o1 (sometimes by a factor of three), whereas the
opposite is true in the outside region. For the cases where ot > o1, pi is in the
range 1.05+1.30, while ¢ = 0, which implies that the most unstable mode is two-
dimensional. All isolines in fig. 3 were drawn using interpolation and are based
on about forty computed data points, almost equally distributed over the figure
domain. _

Similarly obtained results for class-II interactions are presented in fig. 4.

I
/
0.8
0.7
|
0]0 /
s
— \0_025 yd —
N ——— / E—
S—
b)
0 | { | i ] I
0.4 0.5 0.6 0.7 0.8 0.9 1.0
tgh (k h)

Fig. 4. — Summary of results for class-II instabilities: a) isolines of qy;, b) isolines of 10qy;.
Note that in this case py; is always 0.5. Figure 4a) gives the values of g7, while oy

is shown in fig. 4b). For the domain above the dashed line in fig. 4b), o> o,
which indicates that for steep waves class-I1 instabilities may become dominant.

5. — Long-time evolution of Stokes waves.

Wave flume experiments on nonlinear wave trains [22] have shown that the
unstable modulations grew to a certain maximum value and then subsided,
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reaching nearly the undisturbed state again. This cyclic modulation-
demodulation phenomenon associated with instabilities of nonlinear systems is
known as the Fermi-Pasta-Ulam recurrence. YUEN and FERGUSON [23, 24] have
obtained such a periodic recurrence by solving numerically the nonlinear
Schrodinger equation. YUEN and LAKE[2] used a numerical solution of the
Zakharov equation to show that the evolution may be either recurring (cyclic), or
chaotic, depending on the choice of the modes included in the calculations.
STIASSNIE and KROSZYNSKI[25] used the nonlinear Schrodinger equation to
study analytically the evolution of a simpler, three-wave system, éomposed of a
carrier and two initially small «sideband» disturbances. Their recurrence period
(given by a simple formula) is in good agreement with the numerical results.

Experiments by SU[11] and SU et al. [12] have shown that an initial state of a
steep two-dimensional wave train evolved into series of three-dimensional
cresceptic‘ spilling breakers, and was followed by a transition to a two-
dimensional wave train. One can speculate that the growth of the crescentic
waves and their disappearance are one cycle of a recurring phenomenon. The
three-dimensional character of these disturbances suggests that they originate
from the class-II instabilities. The modified Zakharov equation can serve as a
tool for the analytical study of such recurrence phenomena.

In later investigations SU and GREEN[26,27] suggested the following
interpretation of their experimental results: under the initial action of class-I
instability a wave train with moderately high steepness (aok>0.12) may
undergo a considerable modulation in its envelope; subsequently, a few of the
waves in the middle of the maximum modulation will have local wave steepness
high enough to trigger class-II instability. They added that for high enough
initial steepness (ayk > 0.15) these locally steep waves lead to three-dimensional
wave breaking.

In the present section we study first the long-time evolution of a three-wave
system in deep water, which is composed of the carrier and of two most unstable,
initially small disturbances, separately for class-I and class-11 instabilities. At
the next stage, coupled evolution of class I and class II is considered. In this
case, a five-wave system, consisting of the carrier and the two most unstable
disturbances of each class, is analysed. The total energy of the wave field is also
calculated. In any nondissipative system it should remain constant. This can
serve as a check of the mathematical model.

5'1. Evolution of a three-wave system. — We consider a three-wave system
consisting of waves with the wave numbers given by (4.5) for class-I and by (4.9)
for class-II interactions. The initial amplitudes and phases are chosen as follows:

(5.1a) a, (0) = ay, a;(0) = a;(0) = Mao, @ = o(1),

(5.10) 6, (0)=0, 6,(0)=6r, 6:(0)=6n.
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The «Stokes-corrected» frequencies Q, (i = 0,1,2) are given by

(5.2) | Q=i+ T8, Bl +23 T8, B,

i#j

which follows from (2.22¢). The variables B; are related to the quantities defined
by (5.1) and (5.2) by

: /2 !
(53) B1(t) =r <—chg—')l a; exp [’L ( f (Cz)i - 'sz) dt + 61>] .

(3

The governing equations for B, are the discretized form of the Zakharov equation
(2.17) for class-I instabilities and the modified Zakharov equation (2.25) for class-
IT instabilities, given by

/

(5.49) z‘% = (@0 — w0) By + 2K B B, By explic), 1],
(5.4y) i-—=(£21—wl)B1+K§J)B§"B()J+IeXp[~ 10, ],

(5.49) z‘% = (@, — o) By + K9 BY B{* exp[— i, ],

where for class-T instabilities J = 1 and for class II, J =2, Q, is defined by (4.2d)
or (4.3d), respectively, and the kernels KV are given by

(5.5a) KSD =T ?)o, 1,2, KSD = T§2)2 0,0 K&D =T 2,)1,0,0,

G5 K =3 @fhu1e+ URhos), KP=Ulhoss, KP= Uiy,

From (5.8) and (5.1)

(5.6@) Bo(O) = 71'(29/&)0)1/2 Ay,
(5.6b) B,(0) = n(2g/w) " ay exp [46;],
(5.60) Bz(O) = 7r(2g/w2)1/2 Qo exp [ZOH] .

Applying the operation — i - B} -eq. (5.47) +i- B;- eq. (5.49)* on the system (5.4),
J7=0,1,2 yields

(.7a) % [Bof? = 4K Im {(B§)"* B, By explic, 11} = 4K Im (),
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(5.7b) %13112 = — 2K Im {(B#)’"*' B, By exp[i, t]} = — 2K{ Im (H),

(5.7¢) % |By* = = 2K{’ Im {(B§)"*' B, By exp [iQ;t]} = — 2K§" Im (H) ,
where the complex function
(6.7d) H(t) = (B¥)*' B; B, exp [iQ;1].

A new real function Z is now defined, so that

(5.8) _‘é—f = Im (H(®)) = Im {(B)"*' B, Byexp [i2, 11} .

Substitution of (5.8) into (5.7) and integration yields

(5.9) |By(8)|2 = 4KY Z + BX0),
(5.9b) B\(t)[2= — 2K Z + BX0),
(5.9¢) IBy(t)|? = — 2K Z + BY0)..

Using (5.4) it can be shown that

d _ 0. —019%
(5.10) &RG(H)- [+ 1)Q¢— 2y — 2] at’

which after integration gives

(5.11) Re(H()) = Re (H(0)) — J [(J+1)Qy—0,—Q.]1dZ .

Calculating the square absolute value of H(f) from (5.8) and (5.11) and
rearranging the terms yields

dZ 2 z 2
(5.12) (‘d?) = |H®? - | Re (H(0)) — f [T+ 10— 0 —Q]dZ} =

= |By@*? [By®)[* | B —

Z 2
- {Re [(BF (0)*! B1(0) B(0)] — f [(J +1)Q— 01 — Q5] dZ} -

The r.h.s. of (5.12), after substitution of (5.2) and (5.9), is a known polynomial of
Z of order J+ 3 denoted by Pj.s(Z).
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The solution of (5.12) is

z

(5.13) t= [ -9

i \Pra@)

where Z is allowed to vary between two neighbouring roots of the polynomial:
Z =7y and Z =Zy, where Z; <0 and Zz>0.

From (5.13) it is clear that Z is periodic in time, and that the recurrence
period T is given by

(5.14) T=2 [ dz

For class-I interactions

(5.15) P(Z)=73 a, 2477,

i=0

When «,>0, and there are four roots of the equation P4(Z)=0, which can be
arranged in decreasing order so that Z4>73>0>7Z,>7,, we obtain that
Zy=2, and Z;=Zy. Equation (5.12) in this case has an explicit solution

_ ZZy—Z,) s1® (u, x) — Zy(Zy~2Zy)

5.16 VA »
(6.16) Zs— Z) s u, ©) — Zs = Zo)

where sn(u, k) is the Jacobian elliptic function of argument % and modulus k:

(5.17a) u=sn"1(g, k) - ai?tly,

(5.17b) B=VZ—2) Zs/\Zs— 72 Z,,
(5.17¢) y=2\/(Zs~Z3) (Ts— Z,),

(5.17d) K=\ (Zs—2)(Zs~ 7)) IN(Zy— Z3) (Zs— 7).

The recurrence period for this case is given by
2

(5.18) T'=—K(x),
xp

where K(x) is a complete elliptic integral. Expressions similar to (5.17) and (5.18)
exist also for «, < 0. For class II the polynomial P(z) is of order five, and thus we
cannot express the solution in terms of tabulated functions. Elquations (5.13) and
(5.14) are, therefore, integrated numerically. Once Z is found, (5.9) is used to
obtain |Bi(#)], (5.3) and (5.2) to obtain a;.
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5°2. Evolution of a five-wave system. — We now consider a five-wave system,
consisting of a carrier and two couples (1, 2) and (3, 4) which represent the most
unstable disturbances of class I and class II, respectively. These most unstable
disturbances are given by (4.5) and (4.9):

kozk(l,o), klzk(1+p170)7 kZZk(lﬁpI}O))
ks=FkQ.5,qn), k,=k(Q1.5 - g -

The numerical values of p; and g;; were obtained in the linear stability analysis in
sect. 3 and presented in fig. 3a) and 4a). The initial amplitudes and phase shifts
of these waves are chosen similarly to (5.1):

{ 0(0) =Ty,  a1(0) = 0(0) = 1o, pr=o0(1),
(56.19a)

/ a3(0) = a4(0) = [2511 &o: ur = 0(1);

(5.195) 6O =0, 6,(0)=0,0)0=6;, 6(0) = 6,(0) = y.

The variables B; satisfy the following discretized version of (2.25):

(56.20a) zd—dBt—o = (Qo — wo) By + 2T, 1 o Bf By Byexp [1Qt] +
+2U, 0,34 (BE): By Byexp [1Qy t] +
+2(UP, 554+ Uik 1 5.4 B¥ Bf By Byexp [i(Qn — Q) t],
(5.200) z—dﬁl- = (21— w) B+ T 0 Bf Biexp[— 1Qt] +

+2(UP%, 03,4+ U 2,5,0 BY B Bs Byexp[i(Qu — Qp ],

(5200) Zd_l?g' = (Qg CUQ)BQ + Té ()Bik %eXp [_ iQI t] +

dt
+2(U8%, 1,34+ US, 05,0 Bf Bf By Byexp [i(Qu — Q) ],
(5.20d) 19‘d_Bt§ = (Qs — w3) By + U, 0,0 ¢ B¥ Biexp[— iQu ] +
+(URy 01,2+ ULy o210+ UPy 102+ U100+
+ U 2,01+ USs 21,00 BF By By By exp [i(Qr — Q) t],
(65.2000 B4 (0,— w)B, + U,0,0,0B% Bl exp[— iQy t] +

dt
9
+(U@s01,2+ UPs 0,21+ UPs 102+ UPs 1,20+

+ Uiz,)3,2,0,1 + Uz(iz,)3,2, 1,0) B¥B,B, B, exp [2(Q; — Q] ,
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where Q; and Qp are given by (4.2d) and (4.3d), respectively. From (5.19) and
(5.3)

12
(521@) Bo(O) =r (2—g) 50 s
Wo
2g\¥2 .
(56.21b) Bi0)== (Zf) e Qo €Xp [161]
1
20\ _ _
(5.21¢) By(0) == <;—) w1 o exp [ifr]
2
20\¥2  _ .
(5.21d) B3(0)== (w—> w11 Qo €Xp [2601] ,
3
2g\¥2  _
(5.21e) By0)=~r ('60—4) w1 Qo exp [1611] .

The system of 5 nonlinear complex ODEs (5.20) together with the initial values
(5.21) forms the evolution problem to be studied. In subsect. 4'1 we studied the
degenerate form of the problem, with either B, and B, or B; and B, being
identically zero. In the more general case of 5 equations (5.20) we cannot reduce
the system to a single real equation the solution of which can be presented for
class-I interactions in terms of Jacobian elliptic functions. The problem was,
therefore, solved numerically using the Gil form of the Runge-Kutta
method [28]. The numerical scheme was checked by comparing the results
obtained for different integration steps. All numerical results proved to be
accurate to five significant digits.

5°3. Energy balance. — Another approach for checking the mathematical
model and the numerical results is to calculate the total energy of the wave field.
Note that this energy approach would still hold when more than 5 free
components are included.

The exact equations of motion for water waves (2.1) and (2.2) form a
Hamiltonian system as shown by ZAKHAROV[3], MILES[29] and MILDER [30],
and the total energy of the entire wave field is conserved. The average energy
density, taken over the (x,,®,)-plane, is given by

L L
— 13 1 _l 2 s@
(5.22) h_lbgg(mz_f f2<g77 +o at)dxldxz.

L ~L

Any exact solution of (2.1) and (2.2) should give 4 = const, for all ¢ (as long
as breaking and dissipation effects are not considered). When a truncated
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version of the governing equations is used, one can expect (5.22) to yield A(?)
which is only approximately constant. Note that the assumption of five free
waves leads to a large number of bound waves of higher order, see (2.14). The
number of waves which contribute to the total energy of the wave field
considered results from the structure of (2.15b), (2.18b) and (2.215), and is equal
to 5+3-52+4-5%+5-5*=3705. Equations (2.13) can thus be rewritten in the
following form:

1 3% /e, vz . )
(5.23a) =5 (‘2"&) [B.explilk, x+ ¢ 0]+ *],
n=0
(5.235) L 20\12 _ .
. =g | — [B,exp ik, x+ 3, 0] —*],
T n=0 \ Wy

where, for 0=n <4, B, =B, and Y= — Wy, Tor 4<n <3704, B, and % are given
in the appendix of [17].
Substituting (5.23) into (5.22) gives

3704 3704

(5.240) k=3 Y (wn— 1) RelBnB¥exp[i(ym — xn) tl] +

n=0 m=0;k,=k,,

3704 3704

+5 S (wnt ) Re[BnB,exp[iym + xu) t1] + Ay + 45,

n=0 m=0;ky,=—ky,

where A, and A; are terms of order (aok)* and (aok)®, respectively, given by

4 4 4
(5246) A4 = Z 2 ng),n,m,n ]Bmlz an|2 + 2 T'(ﬂz,)n,”,% |Bn‘4 +
n=0

n=0 m=0;m#n

+ T 12+ TP 00+ T 0,0 Re[(B)? B, Bsexp [i; t1],

(5.24c)  As= QU 03,4+ UPs 0,00+ U 00,00 Re [(BF)? By Beexp [iQy t]] +
+ 20U, 25,4+ U 184+ Uy 0,54+ U 2,30
- Re[Bj Bf Bf Bs B,exp [i(Qy — Q1) t]] +
+ (U84 0,10+ UPs 0,01+ UL 1,02+ USs 120+ Ubsz 01+ UPssro+ U o2t
+UPs 001+ UPs 120+ Us 102+ UPsoo1+Usz10)"

-Re [Bf Bf By B, By exp [i(Q; — Qi) t]].

Note that the conditions that k, = k,, or k, = — k,, drastically reduce the number
of pairs which contribute to the average energy density. The actual number of
contributing wave pairs turns out to be somewhat smaller than 1000 out of a total
3705% possible combinations. All other wave pairs give a contribution which
cancels out when averaged over the whole (x;, x,)-plane.
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The accuracy of (5.24a) is related to the accuracy of the «amplitudes» B,.To
obtain % accurate to order (a,k)?, B, should be accurate to order a,k, thus all the
B, in (5.24a) except for the first five are set to zero. One can show that the
restrictions k, = * k,, exclude the possibility of products having the order (aok)’.
This means that the result from (5.24a) obtained by using only the five free
waves is accurate to the order (@, k) and has an error of order (a, k)*. We denote
this result by As:

1 &
(5.25) hs = 4n2 2 Own \B,|? =359 nE:Oan.

For higher-order corrections one has to include bound waves. To obtain Ay,
accurate to order (aok)?, the first 580 B, are required; these include B, B’, B” and
yield products of B with B” and B’ with B’. h; is obtained when all 3705 B, are
included, thus adding products of B with B” and B’ with B". Note that in order to
obtain accuracy higher than ks one has to add higher-order terms on the right-

hand side of (2.14).

54. Results.

5°4.1. Recurrence periods. The nondimensional recurrence period wel
as a function of the initial linear carrier steepness (a,k) is shown in fig. 5 for
three cases: i) class I, 6; = 0; ii) class I, 6; = =/2; iii) class II, 6 = /2. The initial
phase shift in Z is given by

(5.26) 6 = 6,(0) + 62(0) — (J + 1) 6,(0)

(compare with (4.8)). For all three cases we choose the relative amplitude of the
initial disturbance « = 0.1 (see (5.1)). Generally speaking, the recurrence period
depends on three parameters: the initial steepness of the carrier aok, the
relative amplitude of the initial disturbances . and the initial phase difference 6.
For class-I interactions STIASSNIE and KROSZYNSKI[25] obtained from the
nonlinear Schrédinger equation

2(aek)2[0.98 — 2Iny — In|eos 0[], 0%~ 7/2,
(5.27) CU()T=
2(aok)2[1.67 - 41Iny], =n/2.

The results obtained by (5.27) are represented in fig. 5 by the two low dashed
straight lines, and are in fair agreement with the present results for class-I
interactions. The recurrence period for class II is given in fig. 5 by the upper
solid curve. The dashed line below this curve with the slope 1:3 is given for
comparison, representing a relationship of the form w, T o< (a0 k)~®. The depend-
ence of the class-II recurrence period on u and 6 was found to be qualitatively

39 - Rendiconti S.I.F. - CIX
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Fig. 5. — Three-wave system recurrence periods.

similar to that of class I. Namely, the periods for x = 0.01 were found to be 1.65
to 2 times greater than those for « = 0.1 (note that In0.01/In 0.1 = 2, and compare
with eq. (5.27)); the longest period is obtained for 6 = /2 and the shortest for
6=0. To obtain a better physical feeling, note that the recurrence periods for
very steep waves with ayk = 0.36 and 6 = n/2, u = 0.1, which are approximately
equal for both classes, are 38 times the carrier period.

5'4.2. Evolution patterns. The variation in time of the amplitude of the
free waves is shown in fig. 6 for class-I instability (upper row), class-II
instability (middle row) and the coupled instability (lower row). The results are
for three different Stokes waves having the initial steepness ayk = 0.130 (in the
left column), ayk = 0.227 (middle column) and ayk = 0.336 (right column). For
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Fig. 6. - Dependence of the evolution process on the carrier steepness aok for

‘U.I=‘LLH=O.1 and 01=6H= -~ 7/4.

each of these three Stokes waves most unstable class-I and class-IT disturbances
were introduced, see (4.5) and (4.9), defined by the following parameters:

agk P1 qu

0.130 0.22 1.62
0.227 0.34 1.51
0.336 0.47 1.30

The curve 0 is for the carrier amplitude, the curves 1 and 2 are for the most
unstable class-I disturbances, and the curves 3 and 4, which coalesce for the
present problem, are for the most unstable class-II disturbances. All nine figures
have a duration of about 400 carrier periods. The periodicity of both single-class
evolutions and the decrease in the modulation period with the increase of the
initial carrier steepness are clearly seen in this figure. DOMMERMUTH and
YUE([31] used a higher-order spectral method to study the modulation of a
Stokes wave train due to class-I instabilities, amongst others. They compare
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their results with ours and find that the overall qualitative behaviour is
preserved. .

The results for the coupled evolution are nonperiodic; this can also be seen
from fig. 7, which gives the power spectra of the carrier amplitude for
@k =0.130. We have chosen to demonstrate the results for this relatively low
initial steepness, since this enables us to avoid complications involved in the

a’n hn
= =0.01 =0.1, =0.01
o 1h3(o) . Ay
ha
1 1 /
2
3
0 4,5 0
=0.01 = = =0.1
pp=0.0hp =01 Hr=r, 0
—
0 7500 .0 7500

wot

Fig. 9. - Dependence of the evolution process on the amplitudes of the initial disturbances
K1 and M1 for a/ok = 0.130, BI = 611 = — /4,
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question of wave breaking. According to the experimental results [26], no
breaking is expected as long as ay,k <0.15.

‘The spectra in fig. 7 were calculated from records having a duration sixty
times longer than that in fig. 6. These records were divided into four equal parts,
each having 1024 data points. The curves in fig. 7 are the average of four power
spectra each calculated from one of these parts. The periodicity of the single-
class evolutions manifests itself in the distinet equally spaced peaks in fig. 7a)
and b). In fig. 7c) only the trace of the first class-I peak can be identified, there is
no identifiable trace of the class-II peaks. The spectra for steeper waves are
qualitatively similar. The above observation, as well as ‘the fact that the
amplitudes of the class-I disturbances are in general larger than those of class II,
can lead to the conclusion that class-I instabilities dominate the .coupled process.
From the point of view of the observer of the water surface this conclusion may
be somewhat misleading, since the three-dimensional class-II modes seem to
catch the observer’s eye more than the two-dimensional class-I modulations.
This is demonstrated in fig. 8, which is a picture of the free surface at the instant
marked with an arrow in the middle of the lower row of fig. 6.

In fig. 9 we present the coupled evolution for a,k = 0.130, 6; = 6;; = — =/4, and
for four different couples of initial relative amplitudes of class-I and class-II

6= =6, =1/tn 6,=-6, =-1/4n
a h
n n
a h_(0)
0 h,»he 1
ho 4
7 3
: \/’mmw
<
(o]
I 2

'uII
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i
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VA IV VY

0 10000 0 10000
wot

#II

Fig. 10. - Dependence of the evolution process on the amplitude of the initial disturbance
wn and the phase angles 6; and 6y for aok = 0.130, ur=0.1.
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disturbance modes y; and uy. A general dominance of class I over class II is
observed. In one case (u;=0.1, uy=0.01) class IT is suppressed by class I
throughout the evolution, which covers about 1200 carrier wave periods. A
similar phenomenon appears for cases with higher initial carrier steepness.
Whenever class-IT disturbances take an active part, their maximum amplitude
attained in the course of evolution is essentially independent of the size of the
initial disturbance. On the other hand, the time required to attain this maximum
depends significantly on u; and yy;. The class-I dominance also manifests itself by
the fact that the amplitudes of class-II modes (3, 4) oscillate with the char-
acteristic frequency of class-I modes (1, 2).

In order to have a closer look at the parameters which influence the growth or
suppression of class-II disturbances, we study the coupled evolution process for
a fixed value of u; = 0.1 and varying values of uy, and of the initial phase shifts 6;
and QH- Some representative results are shown in fig. 10 (for ayk = 0.130) and in
fig. 11 (for agk = 0.227). Both figures have two columns, the left one for 6; = /4
and 0y = — /4, and the right column for 6, = — /4 and 61 = n/4. These phase
values are chosen since they correspond to the two possible extreme values of
the initial growth rates. For a,% = 0.130 (see fig. 10), the evolution pattern does
not seem to be sensitive to the initial phases, and depends primarily on uy. For
#1 < 0.02, class-IT instabilities do not grow. For pr = 0.025, the class-II modes

0= =6, = +n/4 6,=- 6y =—n/4
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Fig. 11. — Dependence of the evolution process on the amplitude of the initiad disturbance
pn and the phase angles 6; and 6y for ok =0.227, p;=0.1.
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eventually attain their maximum value. The details for this growth depend on
their initial phases; whenever class-II disturbances start growing at t =0 they
attain their maximum faster.

For ayk=0.227, as in the previous case, no significant class-II activity
appears as long as u; <0.02. For u;>0.02 a profound difference between the

two phases can be observed in fig. 11: for 6; = — 0;; = #/4 class-IT modes scarcely
participate in the evolution process, whereas for 6; = — 6y = — /4 these modes
are much more active. For 6;= — 6;; = — x/4 a small increase in ur changes the

pattern significantly (see right column in fig. 11). Note that the influence of the
initial phase shifts for a,k = 0.227 is opposite to that observed for a, % = 0.130; in
fig. 11 class-II disturbances develop faster when they initially decrease.

574.3. Energy conservation. The uppermost curves in fig. 6 and 9 to 11
represent three approximations of the average energy density, i.e. ks, hy, and hs.

Class-I interaction: one can see that the contribution of the energy terms of
the order (a,k)* leads to a considerable improvement in the conservation of the
calculated energy in the evolution process, and h, does not deviate practically
from a horizontal line, with the exception of the highest amplitude considered.
The higher-order ks curve does not differ from #,.

Class-II interaction: the middle row of fig. 6 shows that the addition of the
energy terms of the order (a,k)* changes only the «mean level» of the energy
density. In order to obtain improvement in the energy conservation one has to
take into account higher-order (a,k)® terms. Note that these terms are not
necessarily positive and the h; and & intersect.

Coupled (class I+ class II) interaction: for the lowest amplitude considered
ok =0.130, the curves hy and h; hardly differ from each other and from the
horizontal straight line, giving an improvement compared to &;. For aok = 0.227,
hs and ks give considerably better results than s, but some deviations from the
horizontal line are seen. The deviations in %; are considerably smaller than those
in hy. At even higher amplitude (aok = 0.336), ks is still better than k, but it
seems that the present order of approximation is insufficient.

The present results thus indicate that the original Zakharov equation
conserves energy with the relative error of O(c®), while the modified Zakharov
equation yields a relative error of O(c*) in the averaged energy density. These
results are in agreement with the conjecture that, since the Zakharov equations
are approximate models of a Hamiltonian system, they conserve energy to their
respective orders. The energy consideration obtained in the numerical solutions
can serve as an additional confirmation of the validity of the model equations
which were based on certain assumptions and involved some rather tedious
algebra in their derivation. The conclusion of Yuen and Lake[2] (p. 196) that the
Zakharov approximation does not conserve energy stems from the fact that they
refer to hy (see our (5.25)) and do not take into account the higher-order
approximation which includes the bound waves.
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Comparison of the present results with experimental observations can shed
some light on the relevance to real water waves. The available experimental
results[26, 27] do not provide all the details regarding the initial noise level
necessary for quantitative comparison. However, the general pattern of the
theoretical results of this section is similar to their experimental observations. In
all cases considered here, class-I instabilities are dominant throughout the initial
stages of evolution (note that the extent of their experimental facility
corresponds to our w,t<1000). SU and GREEN[26] suggest that class-I
modulations, which start first, trigger the class-II instability. While our
approach does not support the trigger mechanism, one can see from the
numerical results given in fig. 9, 10 and 11 that significant class-IT activity
initially appears to accompany high levels of class-I disturbances. In contrast to
their reasoning, our results indicate that, whenever the initial level of class-I
disturbances is substantially higher than that of class II, class-I wave com-
ponénts seem to suppress the three-dimensional (class II) components. These
results contradict the hypothesis of the trigger mechanism. Figures 10 and 11
show that the conditions for the above suppression also include the initial phase
angles of the various disturbances. For extremely steep waves the water surface
becomes three-dimensional even in the initial stage (see fig. 8); this fact is in
agreement with[11,12]. These experiments show that in these cases the waves
break soon afterward. '

6. — Concluding remarks.

In the previous sections we have presented the derivation and some
applications of the modified Zakharov equation. It was shown that this equation
can serve as a powerful tool in the study of irrotational water gravity waves. For
example, Stokes correction to the frequency, as well as its generalization for two
wave trains, was obtained in a straightforward and easy way. The same is
correct regarding the stability analysis of the Stokes wave to class-I (quartet)
and class-II (quintet) interacting disturbances. One can say that, once quite
considerable amount of work necessary to derive the modified Zakharov
equation has been invested, it allows one to obtain numerous results with
relatively simple algebra. For these results to be reliable, one has to be confident
about the correctness of all the interaction coefficients. This confidence can only
be attained when there is a confirmation of the outcome of the model equation by
results obtained by independent technique. This comparison was performed for
the phase velocity shift due to the presence of a second wave train, for the
instability regions of Stokes waves in water of arbitrary depth and for the
location and the growth rate of the most unstable modes, as well as for the
modulation periods of class-I interactions. In all these cases good agreement
between the alternative approaches was attained, thus enhancing our confidence
in the validity of the coefficients involved.
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Several extensions of the model are possible. The most direct approach is to
generalize the equation by including higher-order terms. This modification will
- make it possible to study class-III sextet (six waves) interactions, as well as to
evaluate the Hamiltonian of the wave system to order (a,%)®. However, we do
not feel that the enormous effort necessary to obtain the higher-order interaction
coefficients can be justified by the applicability of the expected results. The
confidence in these coefficients will be necessarily low. Moreover, even the
lower-order class-II interactions become important only for steep waves, and
one can expect that extremely steep waves will be required to get significant
contribution of class-III instabilities. For such waves, however, breaking cannot
be disregarded any more, so that the dissipation makes the wave field non-
Hamiltonian and the model less relevant.

Less cumbersome is the approach which takes into consideration the capillary
effects[5, 8]. As was mentioned above, three-wave resonant interactions are
possible if short enough waves (with the wavelength of the order of 1 em and
less) are considered. Such waves seem to play an important role in the wind
energy transfer to the water waves. The possibility of triad interactions makes it
necessary to modify the interaction coefficients. Here again, the waves
considered are quite steep and dissipation can become important. JANSSEN [8]
has studied the initial evolution of wind-generated gravity-capillary waves using
a Zakharov-type dynamic model equation by incorporating in the equation an
heuristic linear term which accounted for both dissipation and energy supply by
wind. Janssen’s results indicate that an alternative technique for determination
of energy transfer from the wind to the waves has to be found. It appears that
the problem of energy exchange between the wave field and the surrounding
remains one of the major drawbacks of Zakharov-type models.

The description in the Fourier space is one of the basic features of this
equation. While Fourier analysis fits well the study of interactions between
various modes, it makes it difficult to consider problems with well-defined
borders or those where the locations of the energy sources or sinks are given in
physical space. There are, however, some exceptions which can be relatively
easily treated in the general framework of Zakharov’s approach. For example,
when waves in an infinite tank with a rectangular cross-section are considered, a
modification of Zakharov’s approach which takes into account the discrete
spectrum in the direction perpendicular to the channel wall has been devel-
oped [32]. To our best knowledge, there is no satisfactory way to incorporate
wavemaker in the analysis based on the Zakharov equation. The only attempt in
this direction was by adding a pressure disturbance at the free surface [33]. This
approach can be promising in the study of naval hydrodynamics problems.
However, this technique does not appear to be appropriate in many interesting
cases, e.g. when the direct or the parametric excitation of nonlinear standing
waves in a tank is considered. The nonlinear Schrédinger equation which is
formulated in the physical space is in such cases a much more convenient tool
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(see, e.g., [34,35]). The narrow-spectrum assumption which is intrinsic to the
NLS equation does not present a shortcoming for these resonant waves.

To conclude, we must repeat that the Zakharov equation is superior to all
other model equations simply because it contains many of them. It does not
mean, however, that it is desirable in practice to use this approach in all cases.
Under certain circumstances, the selection should be in favour of less general but
more convenient model equations.
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