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1. — Introduction.

The purpose of the present lecture is to show that the classic gravity wave
problem admits stationary solutions with fractal free surfaces. The fractal
dimension of these surfaces is shown to be about 2.3. In the course of making the
above point one has to introduce the following assumptions:

Assume irrotational flow of an incompressible inviscid fluid.

Neglect surface tension effects and wave breaking.

Assume homogeneous wave fields.

Assume densely distributed (continuous) wave action spectrum; this leads
to the requirement of uncorrelated initial random phase shifts.

Neglect the contribution of the bound components of the spectrum
compared to that of the free waves.

Assume that all realizations of the free-surface elevation pass through the
origin as time equals zero.

Assume that the wave field is isotropic.
Discretize the wave action spectrum using a geometric progression.

In our presentation we reverse historical order and start with Zakharov’s [1]
model in sect. 2, then we derive from it Hasselmann’s [2] stochastic model in
sect. 3, and finally relate both of them to Pierson’s [3] linear model in sect. 4. In
sect. 5 we present isotropic stationary solutions of Hasselmann’s equation. The
fractal Weierstrass-Mandelbrot function is discussed in sect. 6, and shown to fit
the free surface of a homogeneous isotropic random wave field in sect. 7. Some
details about the definition of dimension and the dimension of the Weierstrass
function are given in the appendix.
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2. — Zakharov’s model.

The equations governing the irrotational flow of an incompressible inviscid
fluid with a free surface and infinitely deep bottom are

2.1a) V2 =0 (z=<n(x, 1),
2.1b) ne+(Vé-Vn)—¢,=0,

) (2 =1n(x, 1),
(2.1¢) ¢ + —2—(V<;5)2 +gz=0
(2.1d) |Vé| -0 (z— — =),

where ¢(x, 2, t) is the velocity potential, n(x, t) is the free-surface elevation and g
the gravitational acceleration. The horizontal coordinates are (x;, xz) =X, the
vertical coordinate z is pointing upwards, and f is the time.

Given an initial condition in terms of n(x, 0), #(x, n(x, 0), 0), one can transform
the problem into an evolution equation in the Fourier plane
2.2) i§£ = Ik, &) + LK, ) + ...
The new dependent variable B(k, t) represents the free components of the wave
field. I, 1,, ... are integral operators representing quartet, quintet, ... nonlinear
interaction, respectively.

The leading term on the r.h.s. of (2.2) was first derived by ZAKHAROV [1] and
the higher-order term I, was obtained by STIASSNIE and SHEMER [4]:

2.30)  Iy=[[[ T®00BBeBadssos explilw + vy — wp — wg) t] Ak, dky ks,

2.3b) I,= ffjf {UE)Z,)1,2,3,4BiszB3B430+1—2—3—4 exp [t(w + w; — wg — wg — wy) t] +

+ U(o?:)1,2,3,4BikB§kB3B43o+1—2—3—4 exp [Hw + w; + wp — w3 — wy) t]} dk, dk, dks dk,,

where we use a compact notation in which the arguments k; are replaced by the
subscript 7, with the subscript zero assigned to k. The frequency o is related to
the wave number k through the linear dispersion relation w(k) = (g|k|)*% The
kernels T®(k, ky, ko, ks), U®(k, ki, ko, k3, ky), ..., as well as other kernels to
appear in the sequel, are given in[4]. The asterisk denotes the complex
conjugate.

B(k, t) is related to the Fourier transform (denoted by a hat) of »(x, {) and
#(x, ) = ¢(x, n(x, ), t) —the velocity potential at the free surface, through
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b(k, ty—which is a kind of generalized «amplitude» spectrum:

12
(2.40) ik, 0= (5] Tblk, D+ 5k, D),
[67]
. o \12
(2.4b) Bk, 1) = — 1(%> [b(k, 1) — b*(— K, 1)],
(2.4¢) b(k,t)=[B+ B’ +B"+ B" +...] exp[—iw(k)t].
The quantities B’, B, ... represent the bound components of the wave field.

As an example, B’ is given by

exp [’L(w —w) wz) t] n

@5 B=-]f {Vg{;,zBle Som1o -
e W= W T W
exp [H(w + w; — ws) t] +

(2)
+ V512BfBs o2
W+ w;— oy

exp [H(w + w; + wp) t]
w+ w + wy

V), BB e } ak, dk,.

To leading order the free-surface elevation is given by

1 (/L \2 )
(2.6) n(x, 1) = o f <§;> {B(k, t)exp[i(k - x — wt)] + *} dk + const .

The physical dimensions of the variables to be used in the sequel are
[Bl=1"tY2  [T]1=12, [ok..)]I=L.

Note that the superscript (2) in the kernel T® has been deleted.
In the sequel we consider homogeneous wave fields which require discretized
spectra for their representation:

so that (2.6) and. Zakharov’s equations are, respectively, replaced by

k.

2wy,

12
2.8) n(x,t) = %‘2 ( ) {B,() explilk,  x — w,t)] + *} + const,,

(2.9 1

dB, ;
T => Tn,p’q’,é‘npqr exp [i(w, + wp — Wy — w,) t] B;‘,‘BqBr .
par
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Note that [B,]=P?t"'% and ¢,,, an abbreviated form of Kronecker’s delta,
Opipg+rs 18 dimensionless.

Multiplying (2.9) by —iB;¥ and adding to the result its complex conjugate
_gives

y2'

(2.10) < B, =2Re {% S T B €XP [y ] B;fB;:BqB,} ,

where A, = w, + wp, — wg — o, wi=glk,|.

For the derivation of Zakharov’s equation we recall that only terms for which
Apper/w, = 0(1), namely, nearly resonating quartets, contribute significantly in
egs. (2.9), (2.10). For near-resonance conditions one can show that T, =
= Toorg = Tpngr = Trmp- All the = signs become = for exact resonance conditions.

3. — Hasselmann’s stochastic model.

Here it is assumed that the number of components tends to infinity, so that in
the limit they become densely distributed over the relevant domain in the wave
number plane.

It seems that, if one wants to stick to the above assumption and still remain in
a reasonable physical framework, he finds it necessary to take the phases of the
components however close to each other, uncorrelated to lowest order.

Now, since the phases of the B,’s are assumed to be nearly uncorrelated, the
product B} B¥ B, B, will, on the average, be negligible except when either p =g,
n =7 or else n=q, p=r. Hence the term in the curly brackets in (2.10) reduces
to — 2i|B,*>, Ty |B,?, which is imaginary. Thus the r.h.s. of (2.10) vanishes to

lowest order. To calculate higher-order terms, we first differentiate the product
BB B,B, with respect to ¢ and substitute from (2.9)

G1) IS (BIBIB,B) =~ BB, 3, Tuumsbmns XD~ ] BuBEBY -

%,0,W

—BEB,B, S, TyunSpuns €XD [ — 1lpst) BEBEB +

%V,

+BEBEB, S T s uvo €XD [4 st BB, Boy +

UV, W

+ BEBEB; D0 T s O €XP [14 1o 1] BE B, By

u,,W .

The contributions of most of the terms in the above equation cancel out on the
average, thus we obtain

3.2) iad—t (B*B}B,B,) =
= ZTnpq'ré\npqr €xXp [_ iAnpqrt] [Cq Cr(Cp + Cn) - Cn Cp(Cq + Cr)] ’
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where
(3.3) C.=|B,J

is the wave action spectrum.
Integrating eq. (3.2) with respect to ¢ from — o (where the correlations are
assumed negligible) up to ¢ yields

(3.4) BIB}B,B,=
= 20T Sy [CyCoCy + C) = CaCyCy + CI | expl— idypgpe] de;
the factor in square brackets has been assumed to vary slowly compared to the

exponent, so that it was taken outside the integral.
Substituting into (2.10) yields

dc,
dt ,
=4 3 T2 80pr [C,CACy + C) = CuCy(Cy+ CIRe [ explidyper(t— )] dr.

P47 —®

3.5)

0

Since Re f exp [—14s]ds = né(4), we finally obtain

—co

O S T2 6ot oy — g — w[CyCACy + C) — CuCy(Cy+ CI.

(3.6) pF 2

This discretized version of Hasselmann’s model is rewritten in integral notation
as follows:

3C(k, t)

(3.7) >

= dre [[[ T2k, ks, Ko, ) 3K + By — By — ) Do + 0y — g — )

[Cky) Cks) - (Ckey) + C(k)) — C(k) C(ky) - (Clkep) + C(ks))] dke; dkeo dkes,
so that (3.6) is obtained from (3.7) when

3.8) Clk,t)=2C,(O)ok —k,).
Note that [C,]=13t"! and that [C]=1t"".

The arguments of B, vary on a faster time scale than |B,|. Indeed, from (2.9)
one can show that on the average

(3.9) d%(arg B == e Topnys B = — 00,
»

where ¢e,,=1 for n=p and ¢,,=2 for n#p.
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Thus
(3.10) argB,=¢,~Q,t,

where ¢, is an initial random phase, assumed to have a rectangular distribution in
the range (— =, n). Q, is the Stokes correction of the frequency. From (2.5) and
(2.7) it follows that the wave action spectrum of the bound components
C;.=|B,,? is given by

é\m,pﬁ—q am,q -P

1) =2 CpC0d (Vi + (Vidpo”
@1y ¢ %ch q{em( ») (= wp — wg)° Vo) (m + wp — @)’

Om,~p—
3 2 td p q
m P g

4. — Pierson’s linear model.

From (2.4a), (3.3) and (3.10) the free-surface elevation is given by

kn 12
4.1) 7= —1-2 (?—> VC,cos(k, x—w,t+¢,)+ const,
T 5% \ 2w,
where
(42) E:)n = w, + Q) ’

and Q, is given by (3.9). The relatively small contributions of the bound
components given by (3.11) to the free-surface elevation have been neglected.

In order to facilitate the comparison (in sect. 7) with the Weierstrass-
Mandelbrot function, the constant in (4.1) is chosen so that all realizations of
n(t = 0) pass through the origin, giving

12
4.3) n=%2< k") VC, {cos(k, x—aw,t+e,)—cosSe,}.

= \ 2oy,
Switching back to the continuous notation, (4.3) becomes

1/2

L C(k) dk) )

27w

(4.4) n= f{cos(k-x—at+e)—c055}<

where from (3.9)

@

(4.5) o ="Vglko| + f601To101C1dk1-

-0
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The quantity (2=)%|k|C(k)/w = ¢(k), namely the two-dimensional wave number
energy spectrum, is usually specified in terms of the covariance of the surface
displacement at points separated by a distance r

1

4.6) W=

| 2T 1) expl— ik - rldr.

«

PIERSON has shown that (4.4), or actually its discretized realization (4.3),
represents a multivariate Gaussian process, stationary in the variables x, t. Note
that Pierson’s original linear model did not take into account the nonlinear
Stokes correction of the frequency.

5. — Stationary solutions of Hasselmann’s equation.

ZAXKHAROV and ZASLAVSKIY [5] found that (3.7) has two isotropic stationary
solutions

5

(5.1) C o |k|, B=1, 33.

Here we use a somewhat different method and prove that for the one-
dimensional stationary case only one solution of (3.7) exists and that it is given by

(5.2) C o< k|, ﬁ=2%.

Starting from Hasselmann’s model,

oC _
3.7 3

=45 [[[ 78125 [CoCH(Cy + C) — COLCa + Co)lurr-s-s8811-2- Ak; Ay ks,

where C is the wave action spectrum and ¢ is Dirac’s delta-function. The kernel
T? being the square of T for strict resonance conditions has the following
symmetries

(5.3) To,1,2,3 = T0,1,3,2 = T1,0,2,3 = T2,3,0,1
and is a homogeneous function of order 6, since

— 3
(5.4) T sty = o[ Tyt ey

For the degenerate one-dimensional case the vector wave numbers in (3.7) are
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replaced by scalar wave numbers. Integrating (3.7) with respect to k; and then
changing variables k,— k,, k;— ko yields

aC _
(5.5) 3

=4r ffT%,1+2—0,1,2 [C1C(Criz-9+ C) — CCr12-o(Cy + Cy)] 88 14+2-0,1,2dky dks .

Since the next step is the integration of (5.5) with respect to k,, we write

(5.6)  S1uz-02={VIE[+ Vs +ky— k& — Vb = Vikl} = 8 {flkn)}

which is a function of k, with k, k, as parameters.
According to exercise 32, p. 285 in [6],
' S(ky — Ky)
5.7 S{flh)} => ",
where K,, are the roots of f(k,)=0.
Without loss of generality I am considering the case k> 0. The equation
Sf(k2) =0 has four roots, which are designated by a, b, ¢ and d:

6.80) k>k>0, k=|Vi—VE + V- VY - 4l — VEky)[/4>0,

ki +k,— k<0,
G.80) K>k, k=—|VE-Vi+ V- VEF - 4k — k)14 <0,

ki+ky—k>0,
(5.8¢) 0>k>—k, ke=[(k—k —\V-kk)/\Vk-\V=kDE>0,

ki +k,~k>0),
(5.8d) ~k>ky, kg=kk/\ -k - Vk)3E<O0, ki+k;— k<O,

The weight functions g,,=|f'(K,,)| are

(5.90) 9=V VE — V2 + 40 Ik, — )20\ ok, — k),
(5.95) 9=V VI, — VE? + 4k, — k)2, — k) |
(5.90) ge= (Vk = V=2 = kit (k — &y ~ V= ky),
(5.9d) 9=V~ ks = V)2V = by (k — by — \/~ k).
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Thus
—k
dk
6.10 Gr=tx [ “ET81i004lCCuCuaro+ €)= CCanara(Cort Cl+
0
dk; .,
e [ 1 C1CACrucna + €)= CCsnena(Ca + CL +
-k [
k
dkey
47 | T3 0034[C1CuCruama + €) = CCraea(Cy + CT +
0 a

©

dk
+4r f _g_bﬁT%,Hb—O,,B,b[C/»’ Co(Cprp-0+ €) = Clus-0(Cp + C)].

k

The domain b is mapped into the domain a, and the domain d is mapped into ¢, by
the following change of variables:

(6.11) ko= kky, ks=kk;.

Applying these transformations to the various terms in the integrands of
(5.10) gives

(k= (kik)k, k= Fk)k,,

ky=(kik)ki+k,— k), ket+ky—k=kk)k,;
(5.12) 3
7 ky= (k/kl)k, kz(k/kl)klx

ko= kik) by + k. — k), ki+ki—k=klk)k,.

From (6.12), (56.3) and (5.4) one can show that

(5.13)  T8pr-080= Kk’ T811a010, Thpra-o0a= ®k) TF1reo1c-
Equations (5.12) and (5.9) give

(5.14) 9o= /)2 g0, ga=(—ki/k)?g..
Substitution of the above into (5.10) yields

(=) (+) +) +
T8 1+e-01,01[C (k) C (ko) (C (ky + k. — k) + C (k) —

) ,
3C (k) _ f dk,

(6.15) (4m)™! 3

—k c

— O C by + ke — B)(C (k) — C )] + ( - ﬁ)s"” [‘8 (’“—Z> c (—————’“(’“1 ko= ’“)) -
k, ki k,

41 - Rendiconti S.I.F. - CIX
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& (kk,\ & @ Okl (9 12\ O (ke + k,— k)
(8] o) Eon (52) (€ ) o (22
Fak @) ) )
+ f dg ~T 3,1+a—o,1,a{[0 (k) C (ko) (C ks + Ky~ k) + C (k) —

—CO)C ke + by — BXC (k) + C k)] + (kﬁ)s [(5) (l*f) c ( folles ¥ ea — k)) -
1

kl kl

® (kk, +) SORRNGING 7 WIS 2 (=) k(k1+ka;.k)
(6 i ) )0 22

The plus and minus signs above the C’s indicate the direction of propagation of
that component. Equation (5.15) has a stationary solution of the form

(5.16) Clk) =< ||

Substitution of (5.16) into the expressions in the curly brackets in both
integrands of (5.15) gives

G17)  {*} = [Ral Rl (for + ke — Kl* + [K]5) — |KI* oy + For — K (Fea | + [Fe9] +

kS R2)e | ket b= B[Rl
T [kl % % 1A
kRt R+ R — R
e ] (] PRt

where k; is either k, of k,.
S = —17/6 gives {*} = 0. Thus we have found a stationary solution of the one-
dimensional energy transfer equation

(5.2) Ck) o< |k| 17,

6. — The Weierstrass-Mandelbrot function.

The univariate Weierstrass-Mandelbrot function W(x,) is a superposition of
sinusoids with geometrically spaced wave numbers, and amplitudes that follow a
power law. It is given by

6.1) W)= 3 77D (1 - expliy*z,]) explis,],

n=—o
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where y>1, 1<D <2 and the phases ¢, are arbitrary. For the deterministic
case the phases ¢, are chosen by a special rule; for the stochastic case we will
choose the ¢, as independent random variables uniformly distributed between
—r and =. Each choice of the ¢, gives another member of the ensemble of
stochastic functions W(x). By choosing the phases to be independent, and letting
y— 17, W(x,;) is made to be a Gaussian random function. Note that the sum
defining W(x,) extends from — o to + . This means that the wave numbers y"
extend from 0 to . It is in this sense that there is neither a larger scale nor a
smaller scale of variation of W(x,) with x;. The continuation of the sum to — «
and the insertion of 1 in the numerator of the summand is Mandelbrot’s addition
to the Weierstrass function. Extension of the sum to — « ensures perfect
scaling. The 1 in the summand as well as the condition 1 < D < 2 are required for
convergence of the sum. If the sum were to terminate at some smaller value of n,
Say Mmin, and extended to + < we would require only that D <2.

D is known as the fractal dimension of the graph W(x,); by which we mean,
since W is complex, the graph of Re W or Im W. With the indicated restriction on
y and D, the series for W converges but the series for dW/dx, does not.

A generalization of the univariate W.M. function was given by AUSLOOS and
BERMAN [7]:

62) W =nyM*™2S A, S (rgy™P-S-

1 n=—c

- {1 — exp [ [ko y™(x1 cOS O, + %2510 6,,)]11} xP [(¢mn)] -

Here y > 1, the 6,, are equally spaced over (— =, ), the amplitudes A,, are chosen
in a deterministic way, and ¢,,, are either deterministic or random. The value of
M is discussed in the following section. Most important of all, D, which is in the
range 2 <D <3, to ensure convergence, is believed to be the fractal dimension of
W(x,, x,).

The real part of W(x), slightly modified by the addition of time-dependent
deterministic phase shifts, is

M ®
6.3) Re{(W)}=Uny/M)2> A, 5 (koy®)P2-
m=1 n=-—wo
- {€0S n — €08 [k y"(1 COS b, + X2 810 6,) — \/ gko Y2t + dnl } -
For isotropic cases the A,/’s are all equal. More details about the definition of

dimension and about the fractal dimension of the Weierstrass function are given
in the appendix.
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7. — The fractal dimension of the free-surface elevation.

The random free surface of a homogeneous isotropic and stationary ocean is
given from (4.3) and (5.1) by

M kn 12
(7-1) n= % 2=1 2 ( > Cm,n :

2w,

. {cos [kn (xl cos-2Mﬂ + X5 sin%/%) — w,t+ em’n] — €08 [em,n]} ,

where C,,, is a discretized form of the continuous wave action spectrum,

(7.2) C = Colko/k)*, g=4, 3%

M and n tend to infinity so that k,,, = k,(cos @=m/M), sin(2rm/M)) is densely
distributed over the whole wave number domain.
The straightforward way to specify k, is probably

(7.3) =NnAk, n=0,1,2,..., Ak—0.

Nevertheless it is rather rewarding, and equally legitimate, to replace the
arithmetic progression (7.3) by the following geometric series:

(7.4) ky=kyy", m=..-2-1,012 .., y—1°.

From (7.2) and (7.4) we have

21
.5) Cn =220 By In 7 ==L Cllchy™.

Substituting (7.5) into (7.1) yields

L34 (Colny\2 2 = .
(7.6) nngom( i Z E },(5 28)m/4 |

m=] n=—x

2 . 2 -
. {cos [ko y”(ocl cos—;}—% + 2, s1n—;4—m—) — gt + sm,n} — cos [sm,n]} .

- Comparing (7.6) with the W.M. function (6.3), one can see that D—3= (5—-2p)/4,
so that

2.25 for p=4,

1 _35
23 for,8—36.

(7.7 D=4.25—-0.58=
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The above result is an indication of the possibility that the free surface of the
ocean in appropriate circumstances can become a fractal with dimension of about
2.3.

For the one-dimensional case, where waves moving to the left have the same
amplitudes as those moving to the right, (5.2) and (6.1) yield D = 4/3.

* K sk
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N00014-88-J-1027.

APPENDIX

Definition of dimension.

In this appendix we define and discuss two somewhat different concepts of
dimension, the capacity and the Hausdorff dimension; both require only a metric
(t.e. a concept of distance) for their definition. The term «fractal dimension» used
in the heading of the present lecture was originally coined by MANDELBROT who
used it as a synonym for Hausdorff dimension. Other authors use the term
«fractal dimension» as a synonym for capacity. Nevertheless, for many examples
the capacity and Hausdorff dimension take on a common value.

Capacity. — The capacity of a set was originally defined by KoLMOGOROV [8].
It is given by

.. logN(e)
(Al) dc = l}g}m ,

where, if the set in question is a bounded subset of a p-dimensional Euclidean
space R?, then N(e) is the minimum number of p-dimensional cubes of side ¢
needed to cover the set. For a point, a line and an area, N(¢) =1, N(¢) ~ ¢! and
N(e) ~¢7%, and eq. (A.1) yields d,=0, 1 and 2, as expected. However, for more

Fig. 1. — The first few steps in the construction of the classic example of a Cantor set.
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general sets d, can be noninteger. For example, consider the Cantor set obtained
by the limiting process of deleting middle thirds, as illustrated in fig. 1. If we
choose ¢=(1/3)", then N =2™", and eq. (A.1) yields

lo
log

oQ
Do

(A.2) d,= =0.630....

w

Hausdorff dimension. — The capacity may be viewed as a simplified version of
the Hausdorff dimension, originally introduced by HAUSDORFF in 1919[9]. We
have again reversed historical order and defined capacity before Hausdorff
dimension because the definition of Hausdorff dimension is more involved.

To define the Hausdorff dimension of a set lying in a p-dimensional Euclidean
space, consider a covering of it with p-dimensional cubes of variable edge length
¢;. Define the quantity l;(e) by

(A.3) le)=inf3 ¢,

where the infimum (i.e. minimum) extends over all possible coverings subject to
the constraint that ¢, <e Now let

(A4) ld = ].El_l')lol ld(e) .

HAUSDORFF showed that there exists a critical value of d above which {;=0
and below which ;= «. This critical value, d = dy, is the Hausdorff dimension.
Precisely at d=dy, l; may be either 0, «, or a positive finite number.

Weéierstrass function. — In 1872 WEIERSTRASS [10] introduced the functions

(A.5) K@) =3 v cos (my"ay),

n=0

and showed that they were nowhere differentiable in certain cases. HARDY [11]
not only showed that K(x;) is nowhere differentiable for all y>1, and
0<2 - D<1, but, in addition, obtained some exact results concerning the local
Lipschitz order of these functions. KAPLAN, MALLET-PARET and YORKE [12]
show that the capacity of K(x,) is d,=D for y>1, 0<2~— D <1. MAULDIN and
WIiLLIAMS [13] prove that the real part of the Weierstrass-Mandelbrot function
Re{W(x,)} given in (6.1) has Hausdorff dimension dy bounded by

(A.6) D—-(C/hy)<dg<D

for sufficiently large y and some positive constant C.
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