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ABSTRACT. The modified Zakharov equation is used to assess the long-time
evolution of a system composed of a Stokes wave and two initially small
disturbances.

The most important result is that a kind of Fermi-Pasta-Ulam
recurrence phenomenon (which has already been reported for class I
instabilities), exists also for class II instabilities.

1. INTRODUCTION

In a recent study (Stiassnie & Shemer, 1984) we derived a modified
version of the Zakharov integral equation for surface gravity waves.
This version includes higher order, class II, nonlinear interaction as
well as the more familiar class I interaction. A linear stability ana-
lysis of the new equation was used to study some short-time aspects

of class I and class II instabilities of a Stokes wave, yielding result
in agreement with those of McLean (1982). It is our opinion that the
present knowledge of the long-time evolution of class I is limited and
of class II is almost nil.

Class I instability:

Wave flume experiments by Lake et al (1977) have shown how the distur-
bances grew in time, reached a maximum and then subsided. Furthermore,
the experiments showed how the unsteady wave train became, at some stage
of its evolution, nearly uniform again. Yuen & Lake (1982) used a
numerical solution of the Zakharov equation to show that the evolution
may be recurring (Fermi-Pasta-Ulam recurrence) or chaotic, depending on
the choice of modes included in the calculation. Stiassnie & Kroszynski
(1982) used the nonlinear Schr8dinger equation to study analytically

the evolution of a three-wave system, composed of a carrier and two
initially small 'side-band' disturbances. Their recurrence period (given
by a simple formula) is in good agreement with the numerical results.
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Class IIL instability:

To our knowledge, the only information available is that of the
experiments by Su and Su et al. (1982). They have found that an initial
two-dimensional wave train of large steepness evolved into a series

of three-dimensional crescentic spilling breakers (class II), and was
followed by a transition to a two-dimensional moduled wave train (class
I). One can only speculate that the growth of the crescentic waves and
their disappearance are one cycle of a recurring phenomenon. Note that
any theoretical study of this process had to await the derivation of
the modified Zakharov equation.

In the present paper we attempt to assess the long-time evolution
of three-wave systems composed of a Stokes wave (also called carrier)
and two most unstable, initially small disturbances.

The long-time evolution of class II as well as class I instabili-
ties is considered for infinitely deep water. The theory is presented in
par. 2 and the results in par. 3.

2. THEORY

The smallest number of wave trains required to enable significant non-
linear interaction is three for class I as well as class II. In order
that significant interactions will occur, these three waves have to form
a nearly resonating 'quartet' for class I and a nearly resonating
"quintet' for class II. To form a "quartet' or a "quintet' out of three
waves, one can 'count' one of the waves, say-a, twice for class I and
three times for class II.

Linear stability analysis is enabled by assuming that the initial
amplitudes of the two disturbances are much smaller than the amplitude
of the carrier wave.

The wave numbers of the carrier (denoted by subscript a) and the
disturhances (b and c) are

k =k (LO; Kk = k (4p,q); k = (J-p,-q) (2.1)
where:
_ (1, for class I
J = {2, for class II (2.2)

The regions of instability in the (p,q)-plane and the most-unstable
disturbances (having the maximum growth rate) are discussed in Stiassnie
and Shemer (1984).

The free surface elevation for the three-wave system is given by

t
n= I a.cos(k,{§—f Q.de+6 ) (2.3)
j=a,b,c J o J
where (x,,x,)=x are the horizontal coordinates, t is the time and 6,
are the Initial phase shifts. The wavenumbers k.  are given in (2.1)J
and the 'Stokes-corrected' frequencies Qj are given by:

= 2 2 2
Qa et TaaaalRa[ +2Tabable{ * 2TacacIRc[ (2.42)
Q = w 42T, . [R |2+ Tbbbble[ + 2T, o K (2. 4b)
= 2 2 2
Qc - Y +2Tcaca|Ra[ +2chcb[Rbl * chccchl (2.4¢)
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where w,
]

w,

J

The governing equations for R,

Zakharov and modified Zakharov eqsg
respectively, given by:

1.
= (glk.[)* and R,
] ] 3
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is related to_g'j by the linear dispersion relation

n(28)%

iej
. 2.5
5@ (2.5)

are a discretized form of the
for class I and class II,

Fa ~2is 9. ey TR & 4(ft9 dt) (2.6a)

dt a ‘a Rb SFP= 5 J -oa

de t

_b _ (J) o4 J+l

T —1sb RC(Ra) exp1(—£ QJdt) (2.6b)

dRC t

—_ = * i (-

e 1S Rb(R ) expl( £ QJdt) (2.6c)
where Q_ = (J+l)Qa —Qb —QC 2.7)
and

S LD NE)
a b o
J=1 aabc Tbcaa chaa
J= L(U ey (3) ne) "o
aaabc aaach bcaaa cbaaa

the * denotes the complex conjugate, and the interaction coefficients
T...., U..... are given in Stiassnie & Shemer (1984). Note that the
present R, is related to B of Stiassnie & Shemer through:

R. = B, expl(f (Q.—w.)dt) (2.8)

J J o

Applying the operation R*
Equations (2.63) j a b y¢ yields

.Eq(2.63)+R_-Eq(2.6j)* on each of the

d J

’rs lRalz= 452 )Im{(Rg) RbR expl(f 2de)} (2.9a)

d (J) .

r [Rb12=—2s Im{(R*) RbR expl([ Qde) ) (2.9b)

gt [R |2= ZS(J)I {(R*) RbR exol(f Q dt)} (2.9¢0)

A new real functlon Z is defined, so that

dz J+1 t

a4 _ % ; 10)

it Im{(Ra) RbRceXpl(i QJdt)} (2.10)
Substitution of (2.10) in (2.9) and integration yield:

[Ra[2 = 4siJ)z + |z |? (2.11a)

ENE =-2s§J)z + Ir |2 (2.11b)

R |2 =-2sDz + |r |2 (2.11c)
where rj=Rj(t=O) are the initial values. Using (2.6) one can show that

d dz

r Re{(R RbR expl(fQ dt)} = J qee (2.12)

which, after integration, gives
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rc} (2.13)

J+1 Z J+1
X 1 = —
Re{ (R¥) RbRCexpl(} 2,de) } £ 0 dZ+Re{ (x¥)™ Tr,

From (2.10) and (2.13) we obt2in .
Q%%)2=[Ra[z(J+l)lelleclz—[—f QJdZ+Re{(r§g+lrbrc}]2 (2.14)

The r.h.s of (2.14), after substitution of (2.7), (2.4) and (2.11)
is a known polynomial in Z of order (J+3), denoted by PJ+3(Z).
The solution of (2.14) is

t = fz az/ /?&;3(2) (2.15)

where Z is allgwed to vary between two neighboring roots of the poly-
nomial: Z=ZL .and Z=ZR where ZL < 0, and ZR > 0.

From (2.15) it is clear that Z is periodic in time and that the
recurrence period T is given by

ZR
T=2 [ az/ P15 @ (2.16)
ZL A
For class I we write P4(Z) = I aQZ(4_Q). When aO > 0 then the 4

roots are Z, > Z_, > 0 > 22 > Zl; g%?gng Z,=ZR and Z,=ZL, and (2.15) has

3 2
the explicit solttion
P 24(23—22)snz(u,K)—Z3(Z4—ZZ)
Z_

- (23—zz)sn4(u,n)—(z4—zz)

where sn is the Jacobian elliptic function of argument u and modulus« :

(2.17a)

- L
u = sn l(B,K) —ao2 t/Y (2.17b)
B = /(24—22)23 / /(23-22)24 (2.17¢c)
Y = 2//~(z4-zz)(z3-zl) (2.173)
K = /Zz3-z2)(z4-zl)/ /(z4-z2)(z3-zl) (2.17e)
The recurrence period for this case is given by

T =2 k@ (2.18)

aé

8} .

where K is a complete elliptic integral. Expressions similar to (2.17
and (2.18) exist for a_ < 0. For class II, where the polynomial is of
order five, we cannot express the solution in terms of tabulated
functions, and we integrate (2.15) and (2.16) numerically. Once Z is
found, we use (2.11) totobtain {R.I, (2.5) to obtain aj and (2.3) to

obtain n, (note that [ Qj(t)dtzfz Qj(z) P4 (2) 4z).
(0] (o}

3. RESULTS
3.1 Inftial instability

For infinitely deep water, the most unstable disturbances have the
following wave-numbers:
Class I: k% = ko(1+PI,O), k

Class II: Eb = ko(l.S,qII), -kc 5 (L. ’_qII)

il

ko(l_PI’O)

i
-
—~
—
w
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Thus, the class I evolving wave field is two-dimensional, whereas the
class II wave field is three—dimensional but symmetric.

The values of Pt and q;, as functions of the initial steepness
of the Stokes wave (h/\A, h and A are the wave height and wave-length,
respectively) are given by the solid lines and full symbols in Fig. 1.
The lines, for class I and class II were derived from the Zakharov
equation and the modified Zakharov equation, respectively. The dots and
squares are from McLean (1982), obtained by a numerical stability analy-
sis of an exact finite amplitude Stokes wave. The 'dashed' lines and
hollow symbols on the same figure, give the growth-rate of the most
unstable disturbances. (Imo in McLean, 1982). Here again, the lines
are our results and the dots (for class I) and squares (for class II)
are those of McLean. The agreement between the two sets of results is
good for waves of small to moderate wave steepness, and less impressive
for very steep waves. The most important result of this analysis is that
for h/x > 0.1, (from McLean, or h/A > 0.1l from our calculation), the
growth rate of the class II instability overtakes that of class I.

3.2 The recurrence period

The nondimensional recurrence period w _T as a function of the initial
linear carrier steepness a k (a =a (t=q)), is shown in Fig. 2 for

three cases: (i) class I,GO= O,O(i%) class I,0 = w/2; (iii) class II,

§ = w/2. The phase-shift difference 6 is given by 6. +6 -(J+1)6 at t=0.
For all three cases we chose the relative amplitude of fhe initfal
disturbance €l=ab(t=0)/a =3 (t=0)/aO to be 0.1. Generally speaking,

the recurrence period depengs on three parameters: The carrier steepness
a k_, the relative amplitude of the initial disturbance €., and the
pgage—shift difference 6. For class I Stiassnie & Kroszynsky (1982)
obtained:

. T={2(aoko)—2[0.98—21n(€l)—ln[cosGl], 04 /2

_2 (3.1)
& 9(a k ) “[1.67-41n(e,)] , = /2
oo 1

Eq. 3.1 is represented in Fig. 2 by the two lower dashed straight lines.
These results, obtained from the nonlinear SchrBdinger equation, are
in fair agreement with the present class I claculations. The recurrence
period for class II, (e,=0.1 and 6= 90°) is given by the upper solid
curve in Fig. 2. The dashed line below this curve has the slope 1:3,
representing a relationship of the form w _Ta(a k )™ °. The dependence of
class II T on ¢, and g was found to be qualitati%ely similar to that of
class I. Namely, the periods for &, = 0.0l were found to be 1.65 to 2
times greater than those for €,=0.1, (1n(0.01)/In(0.1)=2); the largest
period is obtained for 6= 90°; and the smallest for 6= 0°.

To obtain a better physical feeling, note that the recurrence per-—
iods for k ao=0.36(6=90°, e.=0.1) which are about equal for the two
classes ard 38 times the ca¥rier period.
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3.3 Amplitude evolution

The evolution of the three amplitudes a_/a , /a_, and a /a as a
function of time t/T, (for k a =0.29, €a=091,a8= 80°) forci8ss I

and class II, is given in Fig.OBa and 3% respectively. Figures for the
same k a but different €. are almost identical; and those with
differénf a k , are rathe¥ similar. Both evolution processes have two
distinct regigns: (i) A region in which the disturbances stay smaller
than their initial value. In this region the disturhances reach

a minimum(at Z=ZR), which corresponds to an almést uniform wave train.
(ii) A region in which the disturbances grow beyond their initial

value. Here the disturbances reach a maximum (at Z=ZL),which corresponds
to the most disturbed wave field. The order of appearance of these

two regions depends on the sign of sin® , see 2.9. Fig. 3 is typical
for cases with sin6 > 0; For sin® < 0 the order of the above- mentioned
two regions is interchanged, so that the disturbances grow at the
initial stage. Note that for class IL a =a, throughout the evolution.

3.4 THe free surface

Figure 4 shows the free surface elevation of k a =0.36, £,=0.1 and

6 = 90°. The almost undisturbed wave-train is 8h8wn in Fig. 4a; the
class I most modulated situation is given in Fig. 4b, and the crescentic
shaped, class II waves in Fig. 4c.
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