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Abstract

The two dimensional Tlinear problem of wave radiation and diffraction by a verti-
cally floating plate in water of infinite depth was solved analytically by
Haskind [1]. In the present study we utilize this solution in order to study
the behaviour of systems composed of several plates. Two types of systems

are considered:

(i) systems of rigidly held plates; and (ii) so-called free systems, in which
the plates are only connected to each other. An approximation of wide spacing
between the plates is assumed throughout the formulation of the govern1ng
equations. For each plate the far field solution is matched with those of the
adjacent plates. This makes it possible to present the solution in a closed,
relatively simple form. Results, including the transmission and reflection
coefficients as well as the displacement amplitudes of the structures for various
systems are presented and discussed. Wave-flume experiments verify the validity of
the theoretical approach, but also show the importance of viscous dissipation.
The two main conclusions regarding the possible operation of such structures as
floating breakwaters are as follows. First, for rigidly held systems, in cont-
rast with what one might expect, the transmission coefficient does not generally
decrease when increasing the number of plates. Second, and probably more im-
portant, increasing the number of plates in the case of freely floating systems
reduce their overall motion, render their behaviour more similar to that of fixed
systems, and causes a decrease in the transmission coefficient.
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1. Introduction

The advancements made in recent years in the field of offshore engineering have
led to an increased interest in floating breakwaters. A major purpose of such

a device would be to offer protection against incoming surface waves in deep
water where conventional breakwaters are impractical. In what follows we present
mathematical and experimental studies of a few systems, leading to what seems

to be a prospective solution. The systems proposed herein are composed of seve-
ral vertically floating plates, parallel to each other, and interconnected through
hinges by means of horizontal rigid bars, see Fig. 1.

Fig; 1: A sketch of the system

We consider a two dimenstional model in the (y,z) plane. 'Physically this is
represented by infinitely long plates perpendicular to this plane. The y axis
coincides with the undisturbed water surface and the z axis is pointed downwards.
We assume an irrotational flow in infinitely deep water and remain within the
framework of linear wave theory. Thus, the governing equation and free-surface
boundary condition are
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in which ¢ is the velocity potential, g is the gravitational acceleration, t is
the time, and where subscripts preceded by a comma denote partial differentiation.

The potential of an incident wave, with frequency ¢ and unit amplitude, approa-
ching the system from the left (y = - =) is given by

¢, = - (Jg/o)expliot - k(z+jy)], k=02/9g , 3=/70 (1.3)
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The complete formulation of the mathematical problem is given by egs. (1.1), (1.2),
(1.3), proper boundary conditions on the plates, and the so-called radiation con-
dition at infinity.

In section 2 we summarize the closed mathematical solution for a single plate as
“given by Haskind [1] and Stiassnie [4]. An experimental verification of this
solution is also presented in this section. In section 3 we utilize the wide
spacing assumption (Srokosz and Evans [3]) to obtain a formulation in the form of
a linear algebraic system of equation for the multiplate configuration. The
computed results for multiplate systems are presented and discussed in section 4.
Comparison to some experimental measurements in a wave flume is included in the
same section. Details about the experimental setup are given in Appendix A.

2. Single Plate
The case of a single plate was studied extensively by quite a few investigators.

The following is based on the results of Hasking [1] and Stiassnie [4]. The
transmission coefficient - Tc (defined as the transmitted-to-incident wave ampli-
tude ratio) for a thin plate, submerged to a depth T, is given by:

Tc = t + ByH + B,A . (2.1)

Where t is the transmission coefficient for a rigidly held plate, H is the ratio
between the horizontal displacement amplitude of the point O (intersection between
the plate and the undisturbed water surface) and the incident wave amplitude;

A is the amplitude of the angular motion about O per unit incident wave amplitue.
Thus Q = H + A-T is the ratio between the horizontal displacement amplitude of
the Tower edge and the incident wave amplitude. For the case of a wéight]ess
freely floating plate the expressions for H and A are:

H = ('ngqq + MgDZL})/D ) A = (Yqu,z - MgDZZ)/D (2.2)

The physical meaning of the various quantities appearing in egs. (2.1) and (2.2)
is as follows: B,, By are the amplitudes of the waves radiated in the positive
direction by a unit amplitude of horizontal and angular displacements, respective-
ly, for a single pTate. Yg, Mg are the force and moment exerted on the plate by

a unit amplitude wave arriving from the left. We also have

qu = 0'2].1pq - JO’)\pq s (p and q = 2,4) M D= D22D'+[+ - D21+D1+2 (2.3)
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where upq are the added mass coefficients and qu are the damping coefficents.
The index 2 reffers to horizontal motion and 4 to angular motion. The detailed
mathematical expressions for the above mentioned quantities are rather long and
are given in Appendix B.

For a rigidly held plate the amplitudes H and A vanish so that Tc = t. For this

case the variation of |Tc| and the reflection coefficient |[Rc| are shown in Fig. 2

as a function of T/x (A being the wave length given by 2n/k). In Fig. 2, as well

as in other figures, the general notation is such that the theoretical solutions
are represented by continuous curves (full or dashed lines), and the experimental

l results are denoted by discrete data points.
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Fig. 2. The transmission and reflection coeff1c1ents for a
rigidly held single plate.
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-The agreement between the theoretical and experimental results for this simple
case is satisfactory.

In order to assess the validity of the computational model for more complicated
cases we conducted a series of experiments with a floating plate he1d by means
of horizontal linear springs. The solution for this case was presented by
-Stiassnie [4]. The springs were attached to the plate at the point z = 0

(i.e., at the free surface). This was an arbitrary choice, but it bears no loss
whatsoever on the generality of the solution. A detailed description of the
experimental setup is given in Appendix A. An example of the results for this

case is shown in Fig. 3.
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Fig. 3. The transmission and reflection coefficients

for a spring-moored single plate.
The agreement between the theoretical and experimental results for the spring-
moored plate appears to be fair. It is certainly not as good as that for the
fixed plate. The reason for that is probably due to more energy dissipation
which is enhanced by the motion of the plate.

The rather long, complicated mathematical expressions may give rise to computatio-
nal mistakes. One simple check for such mistakes is the energy balance which
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should yield |Rcl? + |Tc|]? = 1. The computed values of Tc and Rc were found
o comply with this requirement. .

fhe generally favorable agreement between the computations and the experiments,
as well as the energy balance check of the computational results confirmed the
validity of the single plate mathematical model. 1In the next section we use
this model as the basic element for the construction of the mathematical sol-
ution for systems composed of several floating plates.

3.  Method of Solution for Multiplate Systems
Two cypes of multiplate systems are considered, (i) systems of rigidly held plates,
and (ii) so called free systems, in which the plates float freely and are only

connected to each other®.

Qut of several existing biplate models, the one developed by Srokosz and Evans [3]
which is based on the wide spacing assumption, seems most appropriate to be
generalized and applied to the computation of a multiplate system. The assumption
of wide spacing means that the plates are spaced far enough from one another, so
that the local wave field in the vicinity of one plate does not influence the

other plates.

The only interaction between the plates is due to the far field propagating wave
terms which appear in the radiation and scattering problem for a single plate.
Mathematically this is equivallent to requiring the wave length X to be smail
compared to the distance ¢ between any two adjecent plates, but there is an accu-
mulating evidence in the literature that the method is valid over a much wider
range of A/c values. '

Let us observe now N identical and evenly spaced plates as shown in Fig. 4.

The terms Ri’ i=1,2,...,N, denote the amplitudes of the waves travelling to the
right. The amplitudes of the waves travelling to the left are denoted by

Lia i=1,2...N . The subscript i indicates that the wave approacies the i-th
wlate (either from its right,or left,side). The numbering of the plates is
sequential from left to 'richt. Without loss of generality the incident wave
from the left was considered to have a unit amplitude, i.e., Ry = 1. Ly was set

agual to zero in accordance with the radiation condition.

* Despite being termed "free", in practice, these systems should be anchofes
against the non-oscillatory second-order drift forces.
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Fig. 4. Definition sketch of unknowns

In the case of free systems each two adjacent plates are connected by a pair
of rigid bars (through hinges), thus granting the whole system only two degrees
of freedom. A1l plates must have the same horizontal - (H) and angular (A)
movements.

Ho A, Ry (1= 2,...,N) and L;(i = 1,...,N-1), constitute the 2N unknown variables
of the problem.

The equations of motion for the horizontal and angular movements are

N
N-Dpp+H + N:-Dpy-A + Y} (R.-L.) = 0 (3.1}
941 1 1

~L.) =0 (3.2;
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An implication of the wide spacing assumption is that the far field to the right
of the i-th plate in identical with the far field to the left of the i+l plate,
for i=1,...,N-1. In this way we obtain a pair of equations for every interval
between the plates: one for the wave propagating in the positive direction and
the other for the wave propagating in the negative direction.
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The N-1 equations of the first type and the N-1 equations of the second type,
respectively, are:

Bo-H + By-A + t-R, + rels - E*Rity =0 ,1=1,...,N-] (3.3)

-Bo*H - B,-A - E.Li + T-R1+1 + t-L1+1 =0 , 1i=1,...,N-1 ' (3.4)

in which r is the reflection coefficient for a rigidly held single plate and
where E = exp (jkc). Equations (3.1) to (3.4) consistute together a linear
algebraic system of 2N equations with the same number of unknowns. For a fixed
system H and A are identically zero and the relevant set of equations'is given
by a’reduced form of (3.3),(3.4) which leads to a symmetric 3-diagonal matrix.

For two plates the solution is quite simple, but for large values of N the
computation becomes tedious. In the following we present a method which makes
it possible to perform‘simp]e computations for some very large values of N.

The transmission coefficent and the displacement amplitudes for double-body
systems are given by:

Tc = (E+r+t).R, + E-‘t/(r-E) (3.5)
H = 2-(Dyy ¥g=Dau M) - [(r+t-E)/(E-r)~ 2R,1/D (3.6)
A= 2:(-Du-¥#Doz M) - [(r+t-E)/(E-r) - 2R,1/D (3.7)
where

-~ _ =E‘t-D + (E—r—t) - YM .
T r-E)[(r+E)-D ¥ 2.YM] ¢

YM

2'Yg' (DH.L,.'BZ'DQ.Z‘BQ) + 2'Mg(—D21+'Bz+D22-BL’) (3.8)

It will now be shown how the solution for a system with N=2(n+]), n=1,2,...
plates, can be calculated easily from the coefficients of a subsystem composed

of 2”, i.e., half the number of plates. We simply consider the system as

being composed of two subsystems, two-bodies. To obtain the solution for the.
original system (i.e., with N=2(n+]))we have to substitue coefficients,
appropriate to these bodies (each with N=2n),1nto eqs. (3.5) to (3.8). The ,
coefficients for there bodies are‘denoted by the superscript (n) and are calcula-
ted by the following recursive expressions:
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(n-1) (:(n-1)y2 (n-1)y2
(n) _r -(t ) (n-1) . (n) _ E-(%t )
" £2 _ (r(n'1>§é :+ t ’ t £2 (%(h-lj)z
(n-1) (n-1)
- t ~ - t
Bgn) = Bgn 1)'(] + N rin-f)) ; Bﬁn) = Bﬁn 1)'(1 + - r(n—l) )
Y(n) ) Y(n-l) (] . t(n-l) M(n) _ t(n-l)

. . —) s - M(n—l).(1 F T )
g g £+ pn-l) g g L+

| (n-1) y(n-1) , o (ne1) (n-1)
- B .Y - B -M
oip) = 2 0{3) + E - r(”?l) )5 o= 2ol *iE—;—;(%:ij—*Q
(n-1) ,(n-1) afn-1) yln-1)
pin) < 2. (pfn-1) 4 B; - r(:?l) ) = o) = 2.(0{371) + - r(g-l) ) (3.9)

Note that quantities with superscript zero are those for a single plate and
are given explicitly in Appendix B.

4. Results and Discussion
Before going into details we would like to emphasize that our main effort, in

the present research was aimed at analysing the performance of floating struc-
tures as breakwaters. Thus, most of the results are presented from

a "breakwater oriented" point of view. For the sake of this discussion we have
arbitrarily chosen the criterion |Tc| < 0.2 as a required condition for a struc-
ture to be considered as an efficient breakwater. To meet this criterion by
means of a single plate would require T/x > 0.2 in the case of a rigidly held
plate and T/x > 2 for the freely floating one. Both of these requirement seem
difficult to meet. For water of very great depth it appearsAimpractica1 to con-
sider :-igidly held breakwaters. Just as well, and quite obviously, floating
structures with a draft of about twice the commonly &bserved wave lengths are
also impractical. An alternative structure, namely a flexibly moored plate, was
discussed by Stiassnie [4], but this solution was also found to be itfeasible,
as it is associated with huge ascillatory forces which have to be transferred to
the ground far below.

The two basic assumptions that motivated the multiplate research were:
(1) A fixed system increases its efficiency with the increase of ‘the number of
plates; and (ii) The performance of a free system gets more similar to that of
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a fixed one with increasing the number of plates. In the following it is shown
that we were wrong in the first assumption but were, fortunately, right in the
second one. The variations of the transmission coefficient for multiplate

systems are shown in Fig. 5 as a function of the number of the plates and the
spacing to wave-length ratio*. [n this figure, as well as other figures, the
shaded zones are those with [Tc| values greater than 0.2 and white zones are

those with values smaller than 0.2. Figures 5a and 5b are respectively, for
fixed and free systems with T/A = 0.1. Figures 5¢ and 5d are for fixed and

free systems with T/A = 0.2. Inspection of these figures Teads to the following
conclusions: (i) the performance of the fixed system, in contrast With what one

. might expect, is practically the same for almost any large value of N; (i) The
advantage of systems with T/A = 0.2 compared to those with T/x = 0.1 is substan-
tial; and (iii) for N greater than about 16, free systems start to behave simi-
Tarly to fixed ones. To strengthen these conclusions we show, side by side, the
transmission coefficent as a function of ¢/T and T/x for two fixed plates (Fig.6a)
and for a free systems composed of sixteen plates (Fig. 6b). There exists a clear
resemblance between these two figures. It seems that the narrow hyperbolically
shaped zones with ]Tcl > 0.2 are related to the possible creation of standing
waves between the plates. This happens whenever ¢ = n(x/2) s n=1,2,... . The
fact that a multiplate free system behaves similarly to a fixed one is probably
due to the accumulating added masses which sum up to a large added mass valye.

The horizontal displacements at the water surface (|H|) and at the bottom of the
plates (lﬁ]) for a system of 16 plates are shown in Figs. 7a and 7b respectively.
These figures clearly indicate the significantly reduced movements of the 16-plate
structure, which again supports the observation of resemblance between the perfor-
mance of the free and fixed multiplate structures.

The results presented above were computed for systems of constant drafts and with
even spacings between the plates. Further computations for uneven spacings and
variable drafts showed some minor variations from the above results. They
certainly did not yield any considerable improvement, as far as the practical
purpose of the device is concerned.

The experimental study with multiplate systems was Timited, at least for the time
being, to fixed structures. Furture studies will probably include the more
complicated experimental setups of free multiplate structures.

*Note that the mathematical solution is periodic in ¢/Xx, with period one.
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The results for fixed systems of four and eight plates are shown in Figs. 8 and
9 respectively. '

Inspection of the resd]ts from all of the experimentally tested fixed systems
(Figs. 2, 8 and 9)1nd1cates the s1gn1f1cance of energy dissipation as fo]]ows
First, it appears that the agreement between the (no-dissipation) theory and
experiments is better for the smaller number of plates. The energy dissipation
is caused mainly by the vortex sheddﬁng at the bottom edge of the plates, thus,
systems with greater numbers,of plates have more energy dissipators which are
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responsible for the poorer agreement between the theory and the experiments.
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Fig. 9. Eight-plate fixed system. a. Reflection coefficient;
Y. Transmission coefficient.

Second, the agreement, as seen in Figs 8 and 9, is better for the reflection
coefficient than for the transmission coefficient. Intuitively, the reflection
mechanism is practically confined to the first plates in the structure, it in-
volves less energy dissipation than the transmission of energy through the entire
structure. Finally, the experimental scatter of data points which is seen in
Fig. 9b for T/» < 0.8 was noted to be not just a random experimenta1 scatter.
Rather, waves of smaller amplitudes were found to be systematically closer to
the theoretical curve. This again, implies the significance of energy dissi-
pation which is controlled by a nonlinear, amplitude - dependant mechanism.
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The amount of dissipated energy was found, in some cases, to reach as high as 70
percent of the total incident wawe energy. As far as the practical purpose of
the device is concerned, this is a favorable aspect which has not been included
in the present study. Hopefully, this aspect will be included in future studies,
as it will certainly be helpful in the development of the actual structure.

5. Conclusions
The present study is a basic step in the development of one of the forms proposed
for floating breakwaters. In view of its purpose, the main conclusions drawn from

this study are:

(i) In contrast with what one might expect, in general, fixed systems with
large number of plates show no improvement over systems with four plates.

(i1) Free systems improve their reforemance with increasing the number of plates
up to between 16 and 32 plates. Beyond that the displacements of the system are
very small, and it behaves essentially the same as a fixed one.

Note that conclusions (i) and (ii) are correct so far as energy dissipation is
not included in the model.

(111) The experimental model confirmes. the validity of the mathematical approach.

(iv) Considering the practical purpose of the device, the experiments displayed
the significance of introducing energy dissipation to the model.
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Appendix A: Experiments

A.1. The kave Channe]
The exper1ments were conducted in a 27m Tong, 60 cm wide, 1.30 m deep wave

channel, which 1s;equ1pped with a hydraulically powered piston-type wave gene-

~ rator. The model was installed approximately 16 m away from the wave generator,
where two side windows of 6 m overall length enable to observe its behaviour
during the_experiments._ A slope with rubberized hair at the downstream end of
the chdnne] was used as a wave absorber to minimize reflection. A porous screen
kdf the same rubberized material was p]abed in front of the wave generator in
order to filter out small disturbances and to absorb the waves which are reflec-
ted back and forth betweeh the model and the plate of the generator.

A.2. The Generaﬁion of Wéves

The wave generator.is controlled (through a servo-valve) by an outside electro-
nic signal. For the present study a sinusoidal function generator, with contin-
uous frequency and amp]itudebsca1es, was. used in order to produce monochromatic
waves of desired frequencieé and amp]itudeé. '

A.3. The Wave Measurements

The waves were measured with resistance-type wave gages placed at fixed, accu-
rately measured, Jocations along the wave channel. The signals from the .gages
were transmitted to an online minicomputer for immediate ana]ySis Four gages
in front of the model were used to measure the incident and reflected waves.

The transmitted waves were measured by four gages behind the model. The basic
method in which the incident, reflected, and transmitted waves were determined
is essentially the same as that employed by Naheer [2]. Actually, ‘this method
requires only two gages 1n front of the model and two gages beh1nd it. However,
a single measurement from two gages might result in errors which are difficult
to estimate. Such errors may be due to wave nonlinearilies, small free waves
overiaing the main wave,. slight nonlinear responses of the measuring devices,
and errors in measur1ng the distance between the wave gages. For a set of four
wave gages -there are six different combinations of pairs. Thus, instead of a
single valued result (with an undetermined error) from one pair of gages, there
are six values for which the average is taken as the representative result.

The method used to evaluate the waves from the records yields no solution when

the distance between the wave gages is a whole multiple of half the wave

Tength. -In cases where this distance is close to that of no solution, small

errors in distance measurement yield great errors in the results. These cases
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were excluded from the present calculations when the distance between the i-th
and j-th wave gages was such that - 0.05 < sin k (xj-xi) < 0.05. In order to
avoid cases in which all of the combinations of wave gage pairs fall in this
category, the four gages were placed in the channel with unequal distances
between them.

One of the basic theoretical assumptions is the Tinearity of the waves. However,
Tinear wave records are hardly ever obtained in the laboratory, due to either
wave nonlinearities, free waves, or nonlinear response of the wave gages. Even
though the generated wave heights were very small (to insure linearity), it was
impossible to always obtain linear records. Therefore the processing of expe-
rimentaT data included Fourier analysis of the records. The basic ("1inear")
modes of this analysis were used to calculate the incident, reflected and trans-
mitted waves.

Cases of special interest were noted in some tests with the spring-moored single
plate. In those tests the nonlinearities were surprisingly high, even with

very small wave amplitudes. Spectral analysis of the wave records indicated that
these nonlinearities were due to free waves of exactly twice the frequency of the
incident wave. Review of the theoretical equations showed that the pressure at
the bottom of the plate (which is the driving force of its heaving motion) esci-
Tlates at twice the frequency of the sway and roll motions. Indeed this kind of
motion was observed in those experiments, and they were probably the cause for
this particular sort of nonlinearity. However, further study is required to
verify this quantitatively.

A.4.  The Model

A.4.1. The Spring-Moored Single Plate ‘

The plates were made of 10mm thick plywood with density of 0.53gr/cm3.
A 10mm thick brass strip with density of 8.47gr/cm3 was attached to the side of
the playwood in order for the plate to float vertically. The brass strips were
machined to a prescribed width so that a given plate would float freely with a
desired draft. Several plates were used with draft range from 20.0cm to 41.7cm.
A1l the plates protruded approximately 4cm above the surface to prevent wave

overtopping. This restricted the generation of wave heights to a maximum of
approximately 4cm, which is unrelated to, but in compliance with the restriction
imposed by the Tinearity requirement.

The plates were coated with special paint to prevent soaking and the consequent
change of their mass and buoyancy.
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Fig.10. The experimental anchoring frame for the spri‘ng moored single plate.
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The corners of the brass strip at the bottom of the p]ate were rounded to reduce
energy losses due to flow separation at sharp corners.

The plate was anchored with four identical springs to a frame as shown if Fig. 10.
The frame was rigidly held in the channel_by pressing its spiked caps (see in the
figure) with the nuts "A" against the concrete walls above the window. Nuts "B"
were used to align the anchoring points in the frame with the attachment rings

"C" on the plate. The plate was lcm shorter than the width of the channel, and

it was aligned so that a 5mm clearance between the plate and the wall was kept

on both sides. The calibration of the anchoring springs showed nonlinear res-
ponse at small elongations. The bolts "D" were therefore used to stretch the
springs to the range of their Tinear response.

The water depth was 85.7cm throughout all of the tests.

A.4.2. The Multiplate System
The present experimental study with multiplate systems was confined to rigidly
held plates. The plates were bolted to a structure made of perforated steel
profiles, which were constructed so that wide ranges of drafts and spacings
between the plates could be tested. Their width was the same as that of the
channel leaving no gaps between the plates and the walls and they protruded

high enough above the water to prevent wave overtopping.

The maximum Tength of the system was 2.5m. The tests were limited to cases of
equally spaced plates. Systems of four plates and eight plates were employed
(i.e., the maximum spacing for the four plate system was approximately 80cm, and
for the eight plates approximately 35cm). The range of plate draft was from
10cm to 30cm.

A1l the tests were conducted at water depth of 80cm.

Appendix B: Mathematical Expressions
The expressions for the coefficients appearing in egs. (2.1), (2.2) and (2.3)

are as follows:

‘jKl . -
t = ml 5 r=1-1t
5. = ~23uSy ‘ 5 _-2JT(S,-n/4)
2 7 wIi-jKa ? # ml; - JKy
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-2975, M = 29TA(Sy-/4)
Yg ) nl1-JKy ’ g :
' u(nly-3Ky)
447252 . . 4aTH(S1-7/4)°
>\22 = TT21§+K§ ’ bl UZ(TTZI%'FK%)
. 4oT35,(S,-7/4)
24 42 u(ﬂ21%+K§)
2 s, Sit s
417 (L2020 1
M22 =~ 2 " n2 U(WZI%+K%)
3 -1
- AT n,1 Sy, S, SI-mro/A
[PTR P A B FAR TR TE R 4 p K%)}
' "L (Sy-n/8) (/ummarp/4) )
u 4T‘+ {4+1r2 + T T2 ( 1 4 1So + SO _ 1=T T/ p-muys,.
yyp = —— N e - b —_
T r oer By 6h w3 42 S u2(n?124KE)

In the above formulae T', Tg, and Y2 are given by:

T = Y] - uyy - 0.57K; ; Ty = u?S1ys - uSo(w21§+K§)

v1 = 2155 1- Koty ; vo = w2:1, -I; - Ko - Ky

where Sg = 0.5m{Ig+Lo) and S3 = 0.5m(I1+L1)/u.

Lo, L1 and Ko, K1, Ip, I1 are Struve functions and Bessel functions of the
argument u = kT, respectively. The terms 351, 161 and Kal are given by
-1 H -1 ?

0

U
Soo =] So(€)dg , I, = [ I, (g)de , Ky =
0 0

(*} The presenf expression for y,, {s slightly different from that in Haskind [1]
and Stiassnie [4] due to an algebraic error in those papers.
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