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Tsunami and acoustic-gravity waves in water
of constant depth
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A study of wave radiation by a rather general bottom displacement, in a compress-
ible ocean of otherwise constant depth, is carried out within the framework of a
three-dimensional linear theory. Simple analytic expressions for the flow field, at
large distance from the disturbance, are derived. Realistic numerical examples in-
dicate that the Acoustic-Gravity waves, which significantly precede the Tsunami,
are expected to leave a measurable signature on bottom-pressure records that
should be considered for early detection of Tsunami. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4817996]

I. INTRODUCTION

In a series of recent studies, the Russian group lead by Professor M. A. Nosov has demonstrated
the importance of the small compressibility of the ocean in the process of Tsunami generation;
see Nosov1, 2 and Nosov et al.3–5 These studies follow the foundation laid in earlier attempts by
Miyoshi,6 Sells,7 and Yamamoto.8

The overwhelming majority of ocean-wave studies ignores the minute compressibility of the
water, which is expected to have, and in most cases has, only a negligible effect on the main physical
processes. However, a rather straightforward analysis of the linearized problem in water of constant
depth reveals that for any wave period (T) smaller than four times the water depth (h) to the speed
of sound (c) ratio (i.e., T < 4h/c), two or more propagating modes are possible.

This state-of-affairs is rather different from the situation in an incompressible ocean, for which
only one propagating mode exists. In the balance of this paper, we shell refer to these modes by their
wave numbers: q0 > 2π /cT > q1 > q2 > . . . > qN; where q0 represents the mode which also exists in
a incompressible ocean, and will be called the Tsunami mode, whereas q1, q2, . . . , qN represent the
additional propagating modes, which result from taking the compressibility of water into account,
and will be called the Acoustic-Gravity modes. A disturbance at the ocean floor, such as that caused
by a submarine earthquake, produces many different modes. Most of these modes (qN + 1, qN + 2. . . )
are non-propagating (evanescent) and of local importance only. However, the Tsunami q0 and the
leading Acoustic-Gravity mode q1 (and of less importance also q2, . . . , qN) propagate away from the
earthquake site and travel to a great distance. An Acoustic-Gravity wave travels significantly faster
than the Tsunami, and thus, is a possible candidate for an early warning about the approach of the
latter.

This paper is an extension to three dimensions and a generalization to arbitrary bottom motions
of the work in Stiassnie.9 Stiassnie9 provided results for an infinitely long stripe shaped disturbance,
whereas here we give an analytic solution for the general problem and detailed calculations for
piston type motions of circular and rectangular disturbances.

II. FORMULATION

Let us consider a layer of an ideal compressible homogenous fluid of constant depth h in the
field of gravity, and assume it is unbounded in the horizontal (x, y) plane. The origin of the coordinate
system oxyz is at the unperturbed free-surface, and the z-axis is oriented upwards. In order to find
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the wave disturbance z = η(x, y, t), that is, excited at the fluid surface by a bottom motion z = −h
+ ζ (x, y, t), it is necessary to solve for the flow velocity potential �(x, y, z, t) which is governed by
the wave equation

∇2� = 1

c2
�t t , −h ≤ z ≤ 0, (1)

and the linear free-surface and bottom boundary conditions

�t t + g�z = 0, z = 0, (2)

�z = ζt , z = −h, (3)

where c = 1500 m/s is the speed of sound in the water and g = 9.81 m/s2 is the acceleration due to
gravity. Note that outside the area of the motion ζ , the bottom is assumed to be horizontal and rigid.

The free-surface elevation and the dynamic bottom pressure are given by

η = − 1

g
�t , z = 0, (4)

pb = −ρ�t , z = −h, (5)

where ρ = 1000 kg/m3 is the water density.
In Sec. III we present the result for a circular disturbance with radius R, which rises at constant

speed w0 during the time interval (0, τ ) and stops at z = −h + w0τ . For such a disturbance,

ζt = w0 H
(
R2 − x2 − y2

)
H (t (τ − t)) , (6)

where H is the Heaviside function.
In Sec. IV we apply the limits for R, τ → 0, on the solution of Sec. III and divide the result by

w0π R2τ to obtain a Green function and its stationary-phase approximation. The results for circular
and rectangular disturbances are presented in Secs. V and VI, respectively. Some general discussion
about the inverse problem is given in Sec. VII. Some technical mathematical and numerical details
are given in Appendices A–C.

III. SOLUTION FOR A CIRCULAR DISTURBANCE

The t → ω Fourier transform of the velocity potential is defined by

f (x, y, z, ω) = 1√
2π

∞∫
−∞

� (x, y, z, t) · e−iωt · dt. (7)

Substituting (6) in (3) and taking the Fourier transform of (1)–(3) yields

∇2 f = −ω2

c2
f, −h ≤ z ≤ 0, (8)

fz − ω2

c2
f = 0, z = 0, (9)

fz = ζ0 (ω) H
(
R2 − x2 − y2

)
, z = −h, (10a)

where

ζ0 = iw0√
2π

· e−iωτ − 1

ω
. (10b)

Switching to cylindrical coordinates (r, θ , z), defining two regions: an inner region r < R and
an outer region r > R, using the method of separation of variables, applying a boundness condition
on the inner solution and Somerfield’s radiation condition on the outer region, matching the inner
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solution and its r derivative to their counterparts for the outer potential at r = R, and applying the
inverse Fourier transform gives

for r < R

�in (r, z, t) =

−4w0 R

∞∫
0

μ0 cosh [μ0 (z + h)] sin
(ωτ

2

)
ωq0 [sinh (2μ0h) +2μ0h]

·
[

J1 (q0 R) sin
(
ωt−ωτ

2

)
− Y1 (q0 R) cos

(
ωt−ωτ

2

)]

·J0 (q0r ) dω

−4w0 R
∞∑

n=1

∞∫
ωsn

μn cos [μn (z+h)] sin
(ωτ

2

)
ωqn [sin (2μnh) +2μnh]

·
[

J1 (qn R) sin
(
ωt− ωτ

2

)
−Y1 (qn R) cos

(
ωt−ωτ

2

)]

·J0 (qnr ) dω

+8Rw0

π

∞∑
n=1

ωsn∫
0

μn cos [μn (z + h)] sin
(ωτ

2

)
ωqn [sin (2μnh) + 2μnh]

· cos
(
ωt − ωτ

2

)
· K1 (qn R) · I0 (qnr )dω

+2w0

π

∞∫
0

cos
(
ωt − ωτ

2

)
sin

(ωτ

2

)
· c

ω2
·

ωc · sin
(ω

c
z
)

+ g · cos
(ω

c
z
)

g · sin
(ω

c
h
)

+ ωc · cos
(ω

c
h
)dω, (11a)

and for r > R

�out (r, z, t) =

−4Rw0

∞∫
0

μ0 cosh [μ0 (z + h)] sin
(ωτ

2

)
ωq0 [sinh (2μ0h) + 2μ0h]

· J1 (q0 R) ·
[

J0 (q0r ) sin
(
ωt − ωτ

2

)

−Y0 (q0r ) cos
(
ωt − ωτ

2

)]
dω

−4Rw0

∞∑
n=1

∞∫
ωsn

μn cos [μn (z + h)] sin
(ωτ

2

)
ωqn [sin (2μnh) + 2μnh]

· J1 (qn R) ·
[

J0 (qnr ) sin
(
ωt − ωτ

2

)

−Y0 (qnr ) cos
(
ωt − ωτ

2

)]
dω

−8Rw0

π

∞∑
n=1

ωsn∫
0

μn cos [μn (z + h)] sin
(ωτ

2

)
ωqn [sin (2μnh) + 2μnh]

· cos
(
ωt − ωτ

2

)
· I1 (qn R) · K0 (qnr )dω. (11b)

In (11a) and (11b) J, Y are Bessel functions of the first and second kind, and I, K are modified
Bessel functions of the first and second kind.

The Eigenvalues μ = μ0 and μ = iμn, n = 1, 2, . . . (where all μ0, μn are real and positive) are
solutions of the dispersion equation:

μ · tanh (μh) = ω2

g
(12)

and

q0 =
(

μ2
0 + ω2

c2

)1/2

, (13a)

qn =
(

ω2

c2
− μ2

n

)1/2

, ω ≥ ωsn, (13b)
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qn =
(

μ2
n − ω2

c2

)1/2

, ω ≤ ωsn, (13c)

where ωsn are given by the roots of

μn (ωsn) = ωsn

c
, n = 1, 2, . . . . (14)

Good approximated solutions of (12) and (14) are

ωsn = (2n − 1)
πc

2h
, n = 1, 2, . . . . (15)

In (11b) the first, second, and third lines represent the Tsunami, the Acoustic-Gravity waves,
and the evanescent modes, respectively. For further details about the mathematical procedure, see
Appendix B, as well as Hendin.10

IV. SOLUTION FOR A GENERAL DISTURBANCE

Taking the outer region solution (11b), letting R, τ → 0, and dividing by w0π R2τ gives

G (r, z, t) =
∞∫

0

μ0 cosh [μ0 (z + h)]

π [sinh (2μ0h) + 2μ0h]
· [Y0 (q0r ) cos (ωt) − J0 (q0r ) sin (ωt)]dω

+
∞∑

n=1

∞∫
ωsn

μn cos [μn (z + h)]

π [sin (2μnh) + 2μnh]
· J1 (qn R) · [Y0 (qnr ) cos (ωt) − J0 (qnr ) sin (ωt) −]dω

−2
∞∑

n=1

ωsn∫
0

μn cos [μn (z + h)]

π2 [sin (2μnh) + 2μnh]
· K0 (qnr ) · cos (ωt)dω. (16)

In terms of the above Green function the outer solution for a general disturbance is given by

� (x, y, z, t) =
∫ ∞∫

−∞

∫
ζt (X, Y, T ) · G

(√
(x − X )2 + (y − Y )2, z, (t − T )

)
d XdY dT .

(17)
For large distances, i.e., r → ∞, one can use the following asymptotic expansion of the Bessel

functions:

J0 (qr ) =
√

2

πqr
· cos

(
qr − π

4

)
, (18a)

Y0 (qr ) =
√

2

πqr
· sin

(
qr − π

4

)
, (18b)

K0 (qr ) = e−qr

√
2πqr

, (18c)

and simplify (16) for r � h:

G1 (r, z, t) =
√

2

π3r
·

∞∫
0

μ0 cosh [μ0 (z + h)]

q1/2
0 [sinh (2μ0h) + 2μ0h]

· sin
(

q0r − ωt − π

4

)
dω

+
√

2

π3r
·

∞∑
n=1

∞∫
ωsn

μn cos [μn (z + h)]

q1/2
n [sin (2μnh) + 2μnh]

· sin
(

qnr − ωt − π

4

)
dω. (19)
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The oscillation in time of the integrands for the Acoustic-Gravity waves (second line in (19)) is
much faster than that of the Tsunami (first line in (19)), and causes substantial difficulties when one
tries to apply standard Quadrature routines. However, the Green function G1(r, z, t) can be further
simplified by applying the Stationary-Phase method to the second line, which will limit its validity
to t > r/c. Note that the stationary points and the appropriate wave numbers are given by

ω̂n = αnc

h
√[

1 − (r/ct)2
] , (20a)

q̂n = αn (r/ct)

h
√[

1 − (r/ct)2
] , (20b)

where

αn = (2n − 1)
π

2
, n = 1, 2, . . . . (20c)

Following Carrier et al., Ref. 11 Sec. 6-4, we obtain for r/h � 1 and t > r/c

G2 (r, z, t) =
√

2

π3r
·

∞∫
0

μ0 cosh [μ0 (z + h)]

q1/2
0 [sinh (2μ0h) + 2μ0h]

· sin
(

q0r − ωt − π

4

)
dω

− c

πrh
· 1√

(ct/r )2 − 1
·

∞∑
n=1

cos [μ̂n (1 + z/h)] · cos (q̂nr − ω̂nt) , (21a)

where

μ̂n = αn

h

(
1 + g

hω̂2
n

)
. (21b)

V. RESULTS FOR A CIRCULAR DISTURBANCE

In all our calculations here, and elsewhere in this paper, we take 10 Acoustic-Gravity modes.
This choice was demonstrated to be adequate in Stiassnie.9

A. Comparison with previous work

Nosov2 uses a Hankel transform in space r, and a Laplace transform in time t, to obtain
an analytical solution equivalent to (11a) and (11b). We believe that our expressions are not only
physically more transparent but also easier in their numerical realization. In Figure 1 we display
our results for the free surface elevation η(r = 0, t) of a circular disturbance with the same input
parameters that were used by Nosov2: h = 3.6 km, R = 36 km, and τ = 12 s. This figure should be
compared with Figure 2(a) in Nosov.2 The agreement between both calculations is satisfactory, for
the Tsunami (given by the dashed line) as well as for the Acoustic-Gravity wave superposed on the
Tsunami (given by the solid line).

In Tsunami calculations it is quite often assumed that the initial free-surface elevation is very
similar to the initial rise of the ground, see Tobias and Stiassnie.12 This assumption is strengthened
by the results in Figure 2, where we present η(r, t), for r ≤ R and t = τ , t = 10τ , and t = 100τ . Note
that at t = τ the free-surface elevation is almost constant and equal to w0τ . From this figure one can
also see that the surface elevation amplitudes of the Acoustic-Gravity waves are much smaller than
that of the Tsunami.

It is important to note that the development of the Tsunami wave is almost insensitive to the
rising time of the bottom, τ ; in contrast to the strong dependence of the Acoustic-Gravity waves on
this parameter. From Figure 1 one can see that the dominant wave-period of the Acoustic-Gravity
waves is roughly τ . Moreover, no propagating Acoustic-Gravity waves will exist for τ larger than
about 4h/c.
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FIG. 1. The free surface elevation at the origin, originated by a circular disturbance, for comparison with Nosov (2000). η(t)
at observation point r = 0 for depth h = 3.6 km, radius R = 36 km, and duration τ = 12 s. Acoustic-Gravity + Tsunami
(solid line), Tsunami only (dashed line).

FIG. 2. The free-surface elevation η(r, t) originated by a circular disturbance, in the inner region r ≤ R, where depth
h = 4 km, radius R = 40 km, duration τ = 10 s, and speed w0 = 0.1 m/s. Upper: Total elevation. Lower: 10 modes of
Acoustic Gravity waves combined with 10 modes of evanescent waves. t = τ (solid), t = 10τ (dashed), t = 100τ (dotted).
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FIG. 3. The free-surface elevation η(t) of the Tsunami, originated by a circular disturbance, as observed at radial distance
r = 1000 km from epicenter. η(t) was calculated by the first lines of the full solution (11b) (solid line) and of the Green function
approach (21a) (asteriks) total overlapping, for depth h = 4 km, radius R = 40 km, τ = 10 s, and speed w0 = 0.1 m/s. The
original disturbance was divided into 5041 equal elements, each with an area of 1 km2. The time interval is (4600 s–6600 s).

B. Validation of the Green function and of the Stationary-Phase approaches

The validity of the Green Function approach and the usefulness of the Stationary-Phase method
are demonstrated in Figures 3 and 4. Figure 3 gives the results for the Tsunami, whereas Figure 4
focuses on the Acoustic-Gravity waves.

FIG. 4. The free surface elevation caused by 10 modes of Acoustic-Gravity waves that originated by a circular disturbance.
Observation was made at radial distance r = 1000 km from epicenter. The Acoustic-Gravity waves at 1000 km, as calculated
by the second line of the full solution (11b) using the Stationary-Phase approach (solid line) and by the Green function
approach (21a) (dashed line), for depth h = 4 km, radius R = 40 km, duration τ = 10 s, and speed w0 = 0.1 m/s. Upper: for
the time interval (1000 s–1200 s) one sees some differences. Lower: for the time interval (6800 s–7000 s) total overlapping.
For the Green function calculations the original disturbance was divided into 5041 equal elements, each with an area of
1 km2.
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At this stage it is worthwhile to point out that the validity of the Green Function can be proven
analytically, but the graphic results strengthen our confidence also in its numerical implementation.
In Sec. VI we apply the Green Function approach to rectangular disturbances.

Experiments with different element sizes in the Green Function method confirm that element
area of 1 km2 provides reasonable description of the radiation field. Figure 3 shows a full agreement
between both methods in the case of the Tsunami. For the Acoustic-Gravity waves, a small incompat-
ibility appears in the short time interval, very close to the initial arrival time of the Acoustic-Gravity
waves, but fades out with time, until total overlap is reached. Note that the overall agreement, as
demonstrated in Figures 3 and 4, is rather satisfactory and strengthen our trust in the method and
approximations proposed in Sec. IV.

VI. RESULTS FOR RECTANGULAR DISTURBANCE

Note that the following examples for rectangular disturbances are limited to constant disturbance
velocity w0, for simplicity. For a rectangular disturbance Eq. (6) is replaced by

ζt = w0 · H
(
b2 − x2) · H

(
a2 − y2) · H [t (τ − t)] . (22)

In Figures 6–11 the time, surface elevation, and bottom pressure are presented in dimensional
variables.

A. Comparison with previous work

In Figure 5 we compare the results for a slender rectangular disturbance with those for an
infinitely long stripe given in Stiassnie.9 The good compatibility between the 2 models demonstrates
the strength of the Green Function method for handling general-shape disturbances. Some extent of
inconsistency between the models is caused by the fact that the disturbances are rather similar but
not identical.

FIG. 5. The free surface elevation caused by 10 modes of Acoustic-Gravity waves, originated by a rectangular disturbance
of 80 km × 4000 km (solid line) and an infinitely long stripe of 80 km width (dashed line). For both cases h = 4 km,τ = 10 s,
and speed w0 = 0.1 m/s. Observations were taken at x = 1000 km and y = 0 for two time-intervals: upper (2200 s–2400 s)
and lower (5600 s–5800 s). For the Green Function calculations the original disturbance was divided into 320 000 equal
elements, each with an area of 1 km2. Time steps was chosen to be 0.1 s.
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FIG. 6. The free-surface elevation of the Tsunami, originated by a rectangular disturbance of size 40 km × 800 km, depth:
h = 4 km, duration τ = 10 s, and speed w0 = 0.1 m/s. Observations were taken at x = r · cos (θ ), y = r · sin (θ ), where
r = 1000 km and θ = 0 (a), θ = π /4 (b), θ = π /2 (c). The figure in the bottom right corner illustrates the locations of each
observation point with respect to the rectangular disturbance, centered at the origin. For the Green Function calculations the
original disturbance was divided into 32 000 equal elements, each with an area of 1 km2.

B. New results for one rising slab

The free-surface elevations at three different locations and different time intervals, caused by a
rectangular disturbance with a = 400 km and b = 20 km, are shown in Figure 6 for the Tsunami.
Figures 7 and 8 show the bottom-pressure caused by the Acoustic-Gravity waves of the same
rectangular disturbance.

From Figure 6, it is evident that the Tsunami surface elevation amplitude is decreasing when
the angle of observation changes from 0◦ to 90◦. On the other hand, the initial arrival time of the
Tsunami to the observation point at radial distance r is r/

√
gh. Thus, for a depth of 4 km the

Tsunami is expected to arrive to an observation point a after 4800 s, as shown in Figure 6(a). The
arrival time decreases when the angle of observation changes from 0◦ to 90◦, since the distance to
the observation point is shorter for the upper half of the rectangle. It is smallest at observation point
c, which is rather close to the minor face of the rectangular disturbance.

Figure 7 shows the bottom pressure oscillation due to the Acoustic-Gravity waves, originated by
a rectangular disturbance, at 3 different observation points. The arrival times of the Acoustic-Gravity
waves from the nearest/farthest element are marked by asterisk, and are (670 s, 720 s), (520 s, 880 s),
and (400 s, 940 s) for points a, b, c, respectively. Note that the fact that the results in Figure 7 are
drawn only for times larger than 720 s, 880 s, and 940 s for points a, b, c respectively, is a shortcoming
of the approximation that we are using.

Figure 8 shows the time evolution of the same Acoustic-Gravity waves as in Figure 7 for the
same observation points. Note that the amplitudes have stabilized at this stage and that they decrease
with the increase of θ , just as with the Tsunami in Figure 6.
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FIG. 7. The bottom pressure caused by 10 modes of Acoustic-Gravity waves, originating from a rectangular disturbance of
size 40 km × 800 km, depth h = 4 km, duration τ = 10 s, and speed w0 = 0.1 m/s. Observations were taken at x = r · cos
(θ ), y = r · sin (θ ), where r = 1000 km and θ = 0 (upper), θ = π /4 (middle), θ = π /2 (bottom), as illustrated in the right
bottom corner of Fig. 6. In each figure, the first asteriks indicate the theoretical arrival time of the wave, and the second
asteriks indicate the instant prior to which the Stationary Phase approximation is meaningless.

C. New results for two adjacent slabs, one rising and the other descending

Figures 9–11 feature equivalent results as in Figures 6–8; only this time the rectangular distur-
bance is split lengthwise into 2 identical rectangles, each of a = 400 km b = 10 km, where the right
one is moving upward and the left one is moving downward.

The observation points in Figures 9–11 were chosen to be in symmetry, so that one can see the
upside down symmetry in the signals that were observed in point a (at an angle of 0◦) and at point b
(at angle of 180◦), as well as between signals at point c (at an angle of 45◦) and point d (at an angle
of 135◦). Figures 10 and 11 display the Acoustic-Gravity waves for the above 2 plates configuration,
for short and long time intervals.

It is interesting to note that at the observation points with r = 1000 km the Tsunami amplitudes
for one rising slab are larger than those for the two slabs (one rising and one descending); in contrast
to the Acoustic-Gravity waves, for which this trend is reversed.

For an observation point at distance of the order of 1000 km the Acoustic-Gravity waves precede
the Tsunami by the order of 4000 s. which can provide a Tsunami warning of more than 1 h.

A typical value for the free-surface amplitude of the Acoustic-Gravity waves is As = 5 × 10−3 m
for w0τ = 1 m. The corresponding order of magnitude of the bottom pressure amplitude is
Ap = 5000 Pa ≈ 0.05 atm which is considered as measurable.
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FIG. 8. The bottom pressure caused by 10 modes of Acoustic-Gravity waves, originating from a rectangular disturbance of
size 40 km × 800 km, depth h = 4 km, duration τ = 10 s, and speed w0 = 0.1 m/s. Observations were taken at x = r · cos
(θ ), y = r · sin (θ ), where r = 1000 km and θ = 0 (upper), θ = π /4 (middle), θ = π /2 (bottom), as illustrated in the right
bottom corner of Fig. 6.

VII. DISCUSSION AND OUTLINE OF THE INVERSE PROBLEM TREATMENT

In this paper we have demonstrated how one can calculate the Tsunami, as well as the Acoustic-
Gravity waves, that radiate from a rather general bottom disturbance generated by an underwater
earthquake in an ocean of otherwise constant depth.

We have also shown that the Acoustic-Gravity waves, which propagate about seven times
faster than the Tsunami, generate a significant pressure signal at the bottom, which could be used
for early Tsunami detection. Such a procedure requires the development of an approach to solve
the inverse problem, namely, the specifying of the earthquake parameters from measured bottom
pressure records.

In the sequel we outline one possible, rather simplified, procedure.
Assuming a circular disturbance of radius R, duration τ , and vertical velocity w0, according to

Eqs. (11b) and (5), after application of the Stationary-Phase method (Carrier et al.,11 Sec. 6-4), the
leading Acoustic-Gravity mode of the bottom pressure gives

Pb = 8ρcRw0

πr
· sin (ω̂1τ/2) · J1 (Rq̂1) · cos (q̂1r − ω̂1t) . (23)

Denoting the unknown epicenter coordinates by (x0, y0), the unknown instant of the earthquake
occurrence time by t0, and assuming a circular disturbance, yields a set of six unknown earthquake
parameters: x0, y0, t0, R, w0, and τ . These can be retrieved from measurements in two stations: A
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FIG. 9. The surface elevation caused by the Tsunami originating from a rectangular disturbance composed of 2 rectangles
each of size 20 km × 800 km, where the right one moves upward and the left one moves downward. Depth h = 4 km, duration
τ = 10 s, and speed w0 = ±0.1 m/s. The results are shown at x = r · cos (θ ), y = r · sin (θ ), where r = 1000 km and θ = 0 (a),
θ = π (b), θ = π /4 (c), θ = 3π /4 (d).

and B located at coordinates (xA, yA) and (xB, yB). Two measurements are performed in each station
at 2 instances, denoted as tA1 and tA2 for station A, and tB1 and tB2 for station B. The measured data
include the bottom pressure amplitudes and frequencies as summarized in Table I.

We suggest the following procedure, split into 2 steps, for extracting the earthquake parameters.

Step 1: determination of epicenter location and time of occurrence

The time instances (tA1, tA2) and the appropriate frequencies (ωA1, ωA2) are substituted into
(20a) to provide a system of two linear equations for the time of earthquake occurrence that was
intercepted by station A, tA0, and for the radial distance of station A from the epicenter, rA:

ω̂A1 = πc

h
√

1 − [rA/c (tA1 − tA0)]2
, (24a)

ω̂A2 = πc

h
√

1 − [rA/c (tA2 − tA0)]2
. (24b)

Performing the above procedure also to station B yields the following set of values: tA0, tB0, rA,
and rB. To find the location of the epicenter one has to find the appropriate intersection point of the

TABLE I. Measured data notations.

Location Time Amplitude Frequency

A t = tA1 aA1 ωA1

t = tA2 aA2 ωA2

B t = tB1 aB1 ωB1

t = tB2 aB2 ωB2
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FIG. 10. The bottom pressure caused by 10 modes of Acoustic-Gravity waves originating from a rectangular disturbance
composed of 2 rectangles each of size 20 km × 800 km, where the right one moves upward and the left one moves downward.
Depth h = 4 km, duration τ = 10 s, and speed w0 = ±0.1 m/s. The results are shown at x = r · cos (θ ), y = r · sin (θ ), where
r = 1000 km and θ = 0 (a), θ = π (b), θ = π /4 (c), θ = 3π /4 (d).

following two circles:

(xA − x0)2 + (yA − y0)2 = r2
A, (25a)

(xB − x0)2 + (yB − y0)2 = r2
B . (25b)

Although the solution of (25a) and (25b) yields 2 sets of values for (x0, y0), it is most likely that
practically one of the solutions can be discarded, based on geographical considerations.

Step 2: determination of disturbance duration, radius, and vertical velocity

In order to avoid an implicit expression for the disturbance duration τ , we let R → 0 in (23) to
obtain

Pb = 2ρcR2w0

rh
√

(ct/r )2 − 1
· sin (ω̂1τ/2) · cos (q̂1r − ω̂1t) . (26)

Provided the data measurements from both stations A and B and the calculations from step 1
for tA0, tB0, rA, and rB, one can write the following system of 2 equations for each station, for the
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FIG. 11. The bottom pressure caused by 10 modes of Acoustic-Gravity waves originating from a rectangular disturbance
composed of 2 rectangles each of size 20 km × 800 km, where one is moving upward and the other moves downward. Depth
h = 4 km, duration τ = 10 s, and speed w0 = ±0.1 m/s. The results shown at x = r · cos (θ ), y = r · sin (θ ), where r = 1000
km and θ = 0 (a), θ = π (b), θ = π /4 (c), θ = 3π /4 (d).

earthquake duration τ :

ãA1 = 2ρcw0 R2

hrA

√
[c (tA1 − t0A)/rA]2 − 1

· sin (ωA1τA/2) , (27a)

ãA2 = 2ρcw0 R2

hrA

√
[c (tA2 − t0A)/rA]2 − 1

· sin (ωA2τA/2) . (27b)

τA is calculated numerically from the quotient of (27a) and (27b). τA is then substituted in (23) to
obtain the disturbance radius RA from the quotient of the set

aA1 = 8ρcRAw0

πrA
· sin (ωA1τA/2) · J1 (RAqA1) , (28a)

aA2 = 8ρcRAw0

πrA
· sin (ωA2τA/2) · J1 (RAqA2) . (28b)

Once τA and RA are determined, the vertical velocity w0 is calculated from (28a) and (28b) to
obtain 2 values: w0A1, w0A2. A similar procedure applied to the data of point B will give τB, RB and
w0B1, w0B2. Generally speaking, one would expect all values of t0, τ, R, w0 to be equal for both
points A and B. For practical applications one could take t0 = (t0A + t0B)/2, τ = (τA + τB)/2,
R = (RA + RB)/2, and w0 = (w0A1 + w0A2 + w0B1 + w0B2)/4.
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TABLE II. Comparison between model input parameters and inverse calculation results.

Input parameters Inverse process parameters

Distance between epicenter and station A rA 1000 km 1084 km
Distance between epicenter and station B rB 1500 km 1548 km
Epicenter location x0, y0 0, 0 0, 0
Earthquake occurrence time t0 0 s −81.24 s
Disturbance radius R 40000 m 40547 m
Disturbance duration τ 10 s 10.82 s
Disturbance vertical velocity w0 0.1 m/s 0.107 m/s

A numerical example based on the above procedure demonstrates a reasonable recovery of the
earthquake parameters. We have chosen a circular disturbance as the input to the model to produce
an artificial data. The inverse process results are summarized in Table II.

To recover more general disturbances we intend to extend the proposed approach from circular
to elliptical earthquakes. As a first step in this direction the counterpart of Eqs. (11a) and (11b) for
an elliptical disturbance is given in Appendix A.
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APPENDIX A: SOLUTION FOR AN ELLIPTICAL DISTURBANCE

The inverse problem solution that was outlined in Sec. VII is limited to a circular disturbance
only. In order to provide a more general solution for future work, we suggest a new model, where
the circular shaped disturbance of radius R is replaced by an elliptical shaped disturbance with semi-
major axis R1 and semi-minor axis R2, so that R1 = a · cosh (R), R2 = a · sinh (R), where a is half
of the inter-focal distance. By solving Eq. (1) and boundary conditions (2) and (3) for the elliptical
model, the expressions for the potential field in the inner region (above the elliptical disturbance) and
the outer region (outside the elliptical disturbance) are derived, where the parameter R is the radial
coordinate of the elliptical boundary. Note that the potential of the elliptical disturbance is given in
terms of the elliptic cylindrical coordinates (r, θ , z) and Mathieu functions ce2m, Ce2m, Fey2m, and
Fek2m, see McLachlan:13

�in (z, r, θ, t) =

2a2w0

π2

∞∑
m=0

∞∫
0

[
Fey′

2m (R, q0) cos
(
ωt − ωτ

2

)
− Ce′

2m (R, q0) sin
(
ωt − ωτ

2

)]
·

2π∫
0

ce2m (θ, q0) dθ

Ce′
2m (R, q0) Fey2m (R, q0) − Ce2m (R, q0) Fey′

2m (R, q0)
·

μ0 cosh [μ0 (z + h)] · sin
(ωτ

2

)
ωq0 [2μ0h + sinh (2μ0h)]

· Ce2m (r, q0) ce2m (θ, q0) dω

+ 2a2w0

π2

N∑
n=1

∞∑
m=0

∞∫
ωsn

[
Fey′

2m (R, qn) cos
(
ωt − ωτ

2

)
− Ce′

2m (R, qn) sin
(
ωt − ωτ

2

)]
·

2π∫
0

ce2m (θ, qn) dθ

Ce′
2m (R, qn) Fey2m (R, qn) − Ce2m (R, qn) Fey′

2m (R, qn)
·

μn cos [μn (z + h)] · sin
(ωτ

2

)
ωqn [2μnh + sin (2μnh)]

· Ce2m (r, qn) ce2m (θ, qn) dω
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− 2a2w0

π2

∞∑
n=N+1

∞∑
m=0

ωsn∫
0

Fek′
2m (R, qn) · cos

(
ωt − ωτ

2

)
·

2π∫
0

ce2m (θ, qn) dθ

Ce′
2m (R, qn) Fek2m (R, qn) − Ce2m (R, qn) Fek′

2m (R, qn)
·

μn cos [μn (z + h)] · sin
(ωτ

2

)
ωqn [2μnh + sin (2μnh)]

Cem (r, qn) cem (θ, qn) dω

+ 2w0

π

∞∫
0

sin
(ωτ

2

)
cos

(
ωt − ωτ

2

)
·

c

g
sin

(ω

c
z
)

+ 1

ω
cos

(ω

c
z
)

ω

c
sin(

ω

c
h) + ω2

g
cos(

ω

c
h)+

dω, (A1)

�out (z, r, θ, t) =

2a2w0

π2

∞∑
m=0

∞∫
0

μ0 cosh [μ0 (z + h)] · sin
(ωτ

2

)
ωq0 [2μ0h + sinh (2μ0h)]

·
Ce′

2m (R, q0) ·
2π∫

0

ce2m (θ, q0) dθ

Ce′
2m (R, q0) Fey2m (R, q0) − Ce2m (R, q0) Fey′

2m (R, q0)
·

·
[

Fey2m (r, q0) cos
(
ωt − ωτ

2

)
− Ce2m (r, q0) sin

(
ωt − ωτ

2

)]
ce2m (θ, q0) dω

+ 2a2w0

π2

N∑
n=1

∞∑
m=0

∞∫
ωsn

μn cos [μn (z + h)] · sin
(ωτ

2

)
ωqn [2μnh + sin (2μnh)]

·
Ce′

2m (R, qn) ·
2π∫

0

ce2m (θ, qn) dθ

Ce′
2m (R, qn) Fey2m (R, qn) − Ce2m (R, qn) Fey′

2m (R, qn)
·

[
Fey2m (r, qn) cos

(
ωt − ωτ

2

)
− Ce2m (r, qn) sin

(
ωt − ωτ

2

)]
ce2m (θ, qn) dω

− 2a2w0

π2

∞∑
n=N+1

∞∑
m=0

ωsn∫
0

μn cos [μn (z + h)] · sin
(ωτ

2

)
ωqn [2μnh + sin (2μnh)]

·
Ce′

2m (R, qn) ·
2π∫

0

ce2m (θ, qn) dθ

Ce′
2m (R, qn) Fek2m (R, qn) − Ce2m (R, qn) Fek′

2m (R, qn)
·

Fek2m (r, qn) cos
(
ωt − ωτ

2

)
ce2m (θ, qn) dω. (A2)

Note that Ce′, Fey′, and Fek′ are the derivatives with respect to r of these functions. Also note
that the qns in (A1) and (A2) are (a2/4) times the squares of the qns in (13a)–(13c).

APPENDIX B: OUTLINE OF THE MATHEMATICAL PROCEDURE FOR THE SOLUTION
OF THE CIRCULAR DISTURBANCE PROBLEM

In order to obtain the velocity potential field described in (11a) and (11b), a second order partial
equation must be solved. Starting with a cylindrical wave equation model, the method of separation
of variables will be used for separating its radial and depth dimensions. The velocity potential is then
obtained from its independent components for the inner and outer regions separately. The solution
is first obtained in the frequency domain using Inverse Fourier Transform. Then, by using circular
symmetry the full solution is obtained for inner and outer regions. The significance of this stage is
the ability to obtain the spatial and temporal velocity potential field later being used for deriving the
expressions for water surface elevation and bottom pressure.

The Fourier transform of the velocity potential in cylindrical coordinates is defined by

�̃(r, z, ω) = 1√
2π

∞∫
−∞

� (r, z, t)e−iωt dt. (B1)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.68.128.213 On: Sun, 26 Jan 2014 06:49:03



086103-17 G. Hendin and M. Stiassnie Phys. Fluids 25, 086103 (2013)

Taking the Fourier transform of the governing Eq. (1), as well as of the linear boundary
conditions (2) and (3), reduces to the Helmholtz equation with the following boundary conditions:

∇2�̃ = −ω2

c2
�̃, (B2)

�̃z = ω2

g
�̃

∣∣∣∣
z=0

, (B3)

�̃z = w̃0 (r, ω)
∣∣
z=−h , (B4)

where �̃, w̃0 denotes the Fourier transform of �,w0, respectively, and

w̃0 (r, ω) = 1√
2π

∞∫
−∞

w0 (r, t)e−iωt dt = iζ0

τ
√

2π
H

(
R2 − r2

) e−iωτ − 1

ω
. (B5)

Assuming independency of spatial variables r and z the transformed potential �̃ can be written
as a product of 2 functions R̄ and Z̄ :

�̃ (r, z, ω) = R̄ (r, ω) Z̄ (z, ω) . (B6)

Differentiation of (B6) and substituting into (B2) yields a set of 2 ordinary differential equations:

Z̄zz +
(

ω2

c2
+ α3

)
Z̄ = 0, (B7)

R̄rr + 1

r
R̄r − α3 R̄ = 0. (B8)

The lower index refers to the partial derivative with respect to index. α3 is the separation constant
between r and z.

The solution in the vertical direction z depends on the separation constant α3. According to
Moon and Spencer (1961) when choosing α3 = q2, the general solution to (B7) becomes

Z̄ = C1 sin [μz] + C2 cos [μz] , (B9)

μ =
√

ω2

c2
+ q2. (B10)

Application of the boundary conditions (B3) and (B4) for (B9) results in the dispersion equation:

μ · tan (μh) = −ω2

g
. (B11)

A comprehensive examination of the numerical (or graphical) solutions of (B11) reveals one
imaginary root, designated as μ0, and an infinite set of real roots designated as μn, which are divided
into 2 types. The complete set of roots, known as wave modes, is summarized in Table III. The
interpretation as progressive or evanescent wave modes evolves from the analysis of the solution in
the radial direction.

TABLE III. Wave mode types according to dispersion equation roots.

Mode index Mode’s wave number Modes type

n = 0 q0 = i
√

(ω/c)2 + μ2
0 Imaginary μ and q, propagating gravity wave (Tsunami)

n = 1, . . . , N qn = i
√

(ω/c)2 − μ2
n Real μ and imaginary q, propagating acoustic-gravity waves

n = N + 1, . . . , ∞ qn =
√

μ2
n − (ω/c)2 Real μ and q, non-propagating (evanescent) waves
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For the outer (or inner region) these Eigenfunctions are as follows:
For the outer region:

A0
cosh [μ0 (z + h)]

cosh (μ0h)
; An

cos [μn (z + h)]

cos (μnh)

∣∣∣∣
n=1,...,∞

. (B12)

For the inner region:

B0
cosh [μ0 (z + h)]

cosh (μ0h)
; Bn

cos [μn (z + h)]

cos (μnh)

∣∣∣∣
n=1,...,∞

. (B13)

For the inner region one also has to add the following particular solution:

g(z) = icw0√
2π

· e−iωτ − 1

ω2
·

ωc · sin
(ω

c
z
)

+ g · cos
(ω

c
z
)

g · sin
(ω

c
h
)

+ ωc · cos
(ω

c
h
) . (B14)

The solution in the radial direction r is established in the inner and outer regions, according to
the particular boundary conditions. In addition, the parameter q determines whether a specific mode
is progressive or evanescent. The general solution for the radial ordinary differential equation (B8),
as suggested by Moon and Spencer,14 is a linear combination of Bessel functions J0 and Y0:

R̄ = F1 J0 (iqr ) + F2Y0 (iqr ) . (B15)

F1, F2 are general coefficients. For the Tsunami and Acoustic-Gravity modes, when n = 0, . . . ,
N, qn is pure imaginary, thus the argument of the Bessel functions is real, resulting in oscillatory
progressive modes. For the evanescent modes, when n = N + 1, . . . , ∞, qn is real, the Bessel
functions become Modified Bessel functions, resulting in non-progressing modes:

J0 (iqnr ) = I0 (qnr ) ,

Y0 (iqnr ) = K0 (qnr ) .
(B16)

The transformed potential �̃ is constructed from its independent parts for the inner region and
for the outer region separately.

In the inner region the assembled potential is

�̃in (r, z, ω) = A0 J0 (q0r ) cosh [μ0 (z + h)] +
N∑

n=1

An J0 (qnr ) cos [μn (z + h)]

+
∞∑

n=N+1

An I0 (qnr ) cos [μn (z + h)] + g (z) .

(B17)

In the outer region the assembled potential is

�̃out (r, z, ω) = B0 H [1.5+0.5sgn(ω)]
0 (q0r ) cosh [μ0 (z + h)] +

N∑
n=1

Bn H [1.5+0.5sgn(ω)]
0 (qnr ) cos [μn (z + h)] +

∞∑
n=N+1

Bn K0 (qnr ) cos [μn (z + h)],
(B18)

where H [1.5+0.5sgn(ω)]
0 represents the Hankel function as a function of propagation direction according

to

H (1)
0 (qnr ) = J0 (qnr ) + iY0 (qnr ) ,

H (2)
0 (qnr ) = J0 (qnr ) − iY0 (qnr ) .

(B19)
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The set of coefficients A0, An and B0, Bn are computed by applying the continuity conditions on
the boundary that separates the outer region from the inner region, i.e., r = R:

�̃in

∣∣
r=R

= �̃out

∣∣
r=R

, (B20)

d�̃in

dr

∣∣∣∣
r=R

= d�̃out

dr

∣∣∣∣
r=R

. (B21)

In order to calculate the coefficients, �̃in, �̃out need to be multiplied by the vertical Eigen func-
tions (B12) and (B13) and integrated for the interval of orthogonality [−h, 0]. Thus, the expressions
for the transformed potential in the inner and outer regions are obtained:

�̃in (r, z, ω) = −
√

2π Rw0 · μ0 cosh [μ0 (z + h)]

q0 [sinh (2μ0h) + 2μ0h]
·

sgn (ω) · (
e−iωτ − 1

)
ω

· J0 (q0r ) · H [1.5+0.5sgn(ω)]
1 (q0 R)

−
√

2π Rw0

N∑
n=1

μn cos [μn (z + h)]

qn [sin (2μnh) + 2μnh]
·

sgn (ω) · (
e−iωτ − 1

)
ω

· J0 (qnr ) · H [1.5+0.5sgn(ω)]
1 (qn R)

+4Rw0i√
2π

∞∑
n=N+1

μn cos [μn (z + h)]

qn [sin (2μnh) + 2μnh]
·

e−iωτ − 1

ω
· I0 (qnr ) K1 (qn R) + g (z) ,

(B22)

where g(z) is given in (B14):

�̃out (r, z, ω) = −
√

2π Rw0 · μ0 cosh [μ0 (z + h)]

q0 [sinh (2μ0h) + 2μ0h]
·

sgn (ω) · (
e−iωτ − 1

)
ω

· J1 (q0 R) H [1.5+0.5sgn(ω)]
0 (q0r )

−
√

2π Rw0

N∑
n=1

μn cos [μn (z + h)]

qn [sin (2μnh) + 2μnh]
·

sgn (ω) · (
e−iωτ − 1

)
ω

· J1 (qn R) H [1.5+0.5sgn(ω)]
0 (qnr )

−4Rw0i√
2π

∞∑
n=N+1

μn cos [μn (z + h)]

qn [sin (2μnh) + 2μnh]
·

e−iωτ − 1

ω
· I1 (qn R) K0 (qnr ) .

(B23)

Finally, the inverse Fourier transform is applied to obtain the potential field in inner and outer
regions, as given in (11a) and (11b):

� (r, z, t) = 1√
2π

∞∫
−∞

�̃ (r, z, ω)eiωt dω. (B24)

Note that for each mode n = 1, . . . ., ∞, the threshold frequency ωsn separates between
propagating and evanescent modes, and is given by

ωsn = 2π

Tsn
= πc

2h
· (2n − 1). (B25)
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APPENDIX C: CPU TIME

1. Technical information

� All calculations for the above examples were carried out on Windows 7, 64-bit operating system
running on a Dual Core, Quad Thread 64bit Intel i3-2100 processor running at 3.10 HGz per
core, and 3MB smart Cache machine.

� For the circular and the general shape disturbance models, Matlab R2007b software package
7.5.0.342 was used.

2. Measurements

Most of the examples in this study are based on 2 elementary calculation time-increments, such
that for a constant observation point r, a time series is calculated from tmin to tmax, using constant �t
time step, usually taken as �t = 1 min for Tsunami wave and �t = 1 s for Acoustic-Gravity waves.
These elementary calculation time-increments are

� dt1 - Tsunami wave of a circular disturbance, calculated with Quadrature numerical integration
method. The measured elapsed real-time for a single time step was dt1 ≈ 0.035 s (averaged
over 6000 time-steps).

� dt2 - 10 modes of Acoustic-Gravity waves of a circular disturbance, calculated with Stationary-
Phase approximation. The measured elapsed real-time for a single time step was dt2 ≈ 0.001 s
(averaged over 6000 time-steps).

Hence, the general calculation times for a fixed distance r from a circular disturbance are

� Tsunami wave: dt1 · (tmax − tmin)/�t,
� Acoustic-Gravity wave: dt2 · (tmax − tmin)/�t.

For the rectangular disturbance, the application of the Green function method determines that
the CPU time depends also on the spatial size of the disturbance and m, the number of elements,
where each element is calculated according to the basic estimations above. Therefore, the calculation
times for a fixed distance from a rectangular disturbance are

� Tsunami wave: m · dt1 · (tmax − tmin)/�t,
� 10 modes of Acoustic-Gravity waves: m · dt2 · (tmax − tmin)/�t.
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