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a b s t r a c t

In Zakharov’s equation, the spectral function represents the entire horizontal plane. In practical
applications, one often has to use a finite number of Fouriermodes that are determined for limited regions
of the horizontal plane, but vary from region to region.

To overcome this shortcoming, we utilize a discrete windowed Fourier transform to obtain a new
localized Zakharov equation (LZE), which can handle spatial variations in amore transparentway. The LZE
is successfully validated by comparing different aspects of its performancewith results from the Zakharov
equation and a modified nonlinear Schrödinger equation.

© 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Zakharov’s equation [1] is the main existing model to study
the weakly nonlinear evolution of sea states with a broad band of
wavelengths. Zakharov’s equation is deterministic, i.e. no stochas-
tic assumptions were made in the course of its derivation. How-
ever, it is also a very convenient starting point for the derivation of
Hasselmann’s stochastic model [2].

The Zakharov equation is formulated in terms of a generalized
amplitude spectrum b̂(k, t), which is determined from the Fourier
transformof the surface elevationη(x, t) and the Fourier transform
of the velocity potential at the free surface ψ(x, t) by

b̂(k, t) =
1
2π

∫ 
g

2ω(k)

1/2

η(x, t)

+ i

ω(k)
2g

1/2

ψ(x, t)


e−ik·x dx. (1)

Here, · denotes a scalar product; k = (kx, ky) is the wavenumber
vector; x = (x, y) are the horizontal space coordinates; t is time;
g is gravity; and ω is the angular frequency in water of constant
depth h given by the dispersion relation ω2

= g|k| tanh(|k|h).
Zakharov has shown that the temporal evolution of b̂(k, t) is
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governed by

i
∂ b̂
∂t

− ω(k)b̂ =

∫
T0,1,2,3b̂∗

1b̂2b̂3δ0+1−2−3 dk1,2,3, (2)

which is now called the Zakharov equation. Here, we have used the
compact notation, e.g. dk1,2,3 = dk1dk2dk3 and δ0+1−2−3 = δ(k +

k1 − k2 − k3). The kernel T0,1,2,3 = T (k, k1, k2, k3) can be found,
for example, in [3], or in an alternative form with modifications
necessary for the Zakharov equation to be Hamiltonian [4]. Early
numerical simulations of (2) can be found in [5], and more recent
references are given by [6]. Note that, strictly speaking, (1) also
includes boundmodes in addition to the leading-order freemodes,
whereas (2) is for the free modes only. Details about obtaining the
bound modes once the free modes are known can be found in [3].

The inverse of (1) is

η =
1
2π

∫ 
ω

2g

1/2 
b̂eik·x

+ c.c.


dk, (3a)

ψ =
−i
2π

∫  g
2ω

1/2 
b̂eik·x

− c.c.


dk. (3b)

The main goal of the current paper is to tackle the following
challenge. In the derivation of Zakharov’s equation (2), the Fourier
transform (1) is applied over the entire horizontal plane, resulting
in b̂(k, t)—a ‘global’ amplitude spectrum. In practice, however,
i.e. in field or laboratory applications, the Fourier transform is
applied only to a limited region of the horizontal plane, resulting
in a ‘local’ amplitude spectrumwhich varies from region to region.

In Section 2 of this paper, we develop a localized discrete Za-
kharov equation (LZE), tailored to overcome the above-mentioned
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difficulty. To capture the local nature of the wave field we use a
windowed Fourier transform, so that (1) is replaced by the local
amplitude functions

bm,n(x, t) =
1
2π

∫ 
g

2ωm,n

1/2

η(x1, t)

+ i

ωm,n

2g

1/2

ψ(x1, t)


G(x − x1)e−ikm,n·x1 dx1, (4)

where G(x) is the window function, ω2
m,n = g|km,n| tanh(|km,n|h)

and km,n = (m1x, n1y). The inverse of (4) turns out to be

η(x, t) =

−
m,n


ωm,n

2g

1/2 
bm,n(x, t)eikm,n·x + c.c.


, (5a)

ψ(x, t) = −i
−
m,n


g

2ωm,n

1/2 
bm,n(x, t)eikm,n·x − c.c.


, (5b)

which are Fourier series, comparable to the inverse Fourier
transform of (3).

The governing equation for the local amplitude functions is the
new LZE

i
∂bm,n
∂t

− ωm,nbm,n + icgm,n · ∇bm,n

+
D(xx)m,n

2
∂2bm,n
∂x2

+ D(xy)m,n
∂2bm,n
∂x∂y

+
D(yy)m,n

2
∂2bm,n
∂y2

= 2π
−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

×

∫
b∗

m1,n1(x1)bm2,n2(x1)bm3,n3(x1)

× ei(km3,n3+km2,n2−km1,n1−km,n)·x1G(x − x1) dx1. (6)

The local amplitude functions bm,n(x, t) are related to the
generalized amplitude spectrum b̂(k, t) by

bm,n(x, t) =
1
2π

∫
b̂(k, t)g(k − km,n)ei(k−km,n)·x dk, (7)

where g(k) and G(x) are a Fourier transform pair

g(k) =
1
2π

∫
G(x)e−ik·x dx, G(x) =

1
2π

∫
g(k)eik·x dk, (8)

and where g(k)must satisfy the identity−
m,n

g(k − km,n) = 1 (9)

for any k. Window functions which have the property (9) are
presented in Appendix A.

Sections 3 and 4 are devoted to the validation of the LZE (6), by
comparing its performance to that of other ‘benchmark’ models.
This, however, can be done only for problems for which we have
reliable solvers for the benchmark models. Thus, we have decided
to restrict ourselves to problems which are periodic in space, and
we use Zakharov’s equation itself as the main benchmark. The
criteria for validation include comparisons of the free surface, of
invariants, and of spectral evolution.

The successful validation process and future possible applica-
tions are discussed in Section 5. Details of the reconstruction of the
free surface are presented in Appendix B. The relation between the
LZE and the DZE (discretized Zakharov equation) derived in [7] is
given in Appendix C. In Appendix D, the evolution of a single Stokes
wave is analyzed and used to estimate the errors introduced by the
approximations in the LZE.
2. Derivation of the localized Zakharov equation

2.1. Windowed Fourier transform

The two-dimensional spatial Fourier transform of a function
f (x) is defined as

f̂ (k) = F {f (x)} =
1
2π

∫
f (x)e−ik·x dx, (10)

with the inverse transform in the form

f (x) = F −1
{f̂ (k)} =

1
2π

∫
f̂ (k)eik·x dk. (11)

Similarly, one can define a windowed Fourier transform by

fw(x, k0) =
1
2π

∫
f̂ (k)g(k − k0)eik·x dk, (12)

where g(k) is awindow function that is nonzero only in the vicinity
of k = 0. Assuming that thewindow function is normalized so that∫

g(k0) dk0 =

∫
g(k − k0) dk0 = 1 (13)

for any k, integration of (12) over k0 gives

f (x) =

∫
fw(x, k0) dk0,

f̂ (k) =
1
2π

∫∫
fw(x, k0)dk0e−ik·xdx.

(14)

In the case of discrete window positions, k0 = km,n, where m =

1, . . . ,M, n = 1, . . . ,N , the discrete versions of the above results
are obtained as

fm,n(x) =
1
2π

∫
f̂ (k)g(k − km,n)eik·x dk, (15)

and

f (x) =

−
m,n

fm,n(x), f̂ (k) =
1
2π

∫ −
m,n

fm,n(x)e−ik·x dx, (16)

where the discrete version of (13),−
m,n

g(k − km,n) = 1, (17)

is satisfied. In practice, the criterion (17) puts a strong limitation
on the choice of the function g , since the sum (17) must generally
be expected to depend on k. Some window functions that satisfy
(17) are presented in Appendix A.

The grid in thewavenumber space can be chosen to be irregular.
This choicemay be advantageous under certain circumstances. The
present work is formulated, for simplicity, in terms of a regular
grid.

2.2. The localized Zakharov equation

The starting point of the derivation of the LZE is Zakharov’s
equation (2), which describes the temporal evolution of the free,
dominant spectral component b̂(k, t) of a weakly nonlinear wave
field. Based on the previous sections, we define M × N localized
variables

bm,n(x, t)eikm,n·x, m = 1, . . . ,M, n = 1, . . . ,N (18)

as discrete windowed Fourier transforms of b̂(k, t),

bm,n(x, t) =
1
2π

∫
b̂(k, t)g(k − km,n)ei(k−km,n)·x dk, (19)
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for theM × N discrete window positions km,n. One can show from
(16) that the original b(x, t) and b̂(k, t) are obtained as

b(x, t) =

−
m,n

bm,n(x, t)eikm,n·x,

b̂(k, t) =
1
2π

−
m,n

∫
bm,n(x, t)e−i(k−km,n)·x dx.

(20)

Now, multiplying the Zakharov equation (2) by g(k − km,n)

e−ikm,n·x and applying the inverse Fourier transform gives

1
2π

∫ 
i
∂ b̂
∂t

− ω(k)b̂


g(k − km,n)ei(k−km,n)·x dk

=
1
2π

∫
T3+2−1,1,2,3b̂∗

1b̂2b̂3g(k3 + k2 − k1 − km,n)

× ei(k3+k2−k1−km,n)·x dk1,2,3. (21)

Since g(k − km,n) is localized around k = km,n, one can replace
ω(k) on the left-hand side (LHS) with its Taylor expansion

ω(k) = ωm,n + cgm,n · (k − km,n)+
1
2
∂2ω

∂k2x


k=km,n

(kx − kxm,n)
2

+
∂2ω

∂kx∂ky


k=km,n

(kx − kxm,n)(ky − kym,n)

+
1
2
∂2ω

∂k2y


k=km,n

(ky − kym,n)
2, (22)

where cgm,n = cg(km,n) is the group velocity of a wave with wave-
number vector km,n. From (19), it follows that

∂p+qbm,n
∂xp∂yq

=
1
2π

∫
[i(kx − kxm,n)]

p
[i(ky − kym,n)]

q

× b̂(k, t)g(k − km,n)ei(k−km,n)·x dk, (23)

which enables us to write the LHS of (21) as

LHS = i
∂bm,n
∂t

− ωm,nbm,n + icgm,n · ∇bm,n +
D(xx)m,n

2
∂2bm,n
∂x2

+D(xy)m,n
∂2bm,n
∂x∂y

+
D(yy)m,n

2
∂2bm,n
∂y2

, (24)

where we have defined

D(xx)m,n =
∂2ω

∂k2x


k=km,n

, D(xy)m,n =
∂2ω

∂kx∂ky


k=km,n

,

D(yy)m,n =
∂2ω

∂k2y


k=km,n

.

(25)

On infinite water depth, h → ∞, the coefficients take the simple
forms

cgm,n =
1
2

gkm,n

ωm,nkm,n
, D(xx)m,n = −

1
4

g(kx2m,n − 2ky2m,n)

ωm,nk3m,n
,

D(xy)m,n = −
3
4

gkxm,nkym,n
ωm,nk3m,n

, D(yy)m,n =
1
4

g(2kx2m,n − ky2m,n)

ωm,nk3m,n
. (26)
By using (20), the right-hand side (RHS) of (21) can be written in
the form

RHS =
1

(2π)4

∫
T3+2−1,1,2,3

×

 −
m1,n1

∫
b∗

m1,n1(x1)e
i(k1−km1,n1 )·x1 dx1



×

 −
m2,n2

∫
bm2,n2(x2)e

−i(k2−km2,n2 )·x2 dx2



×

 −
m3,n3

∫
bm3,n3(x3)e

−i(k3−km3,n3 )·x3 dx3


× g(k3 + k2 − k1 − km,n)ei(k3+k2−k1−km,n)·x dk1,2,3. (27)

By using the fact that most of the contribution to bm,n comes
from the vicinity of k = km,n, the kernel T3+2−1,1,2,3 can be
approximated so that

RHS =
1

(2π)4

∫∫ −
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× b∗

m1,n1(x1)bm2,n2(x2)bm3,n3(x3)e
−ikm,n·x

× e−ikm1,n1 ·x1eikm2,n2 ·x2eikm3,n3 ·x3

× g(k3 + k2 − k1 − km,n)e−i(x−x1)·k1

× ei(x−x2)·k2ei(x−x3)·k3 dx1,2,3d k1,2,3. (28)

We now carry out the integration over k1, k2 and k3 using

1
2π

∫
g(k3 + k2 − k1 − km,n)e−i(x−x1)·k1 dk1

= e−i(x−x1)·(k3+k2−km,n) 1
2π

∫
g(u)ei(x−x1)·u du

= e−i(x−x1)·(k3+k2−km,n)G(x − x1) (29)

and

1
(2π)2

∫
eik2·(x1−x2)eik3·(x1−x3) dk2,3

= (2π)2δ(x2 − x1)δ(x3 − x1), (30)

where G(x) is the inverse Fourier transform of g(k), so that (28)
becomes

RHS = 2π
∫ −

m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× b∗

m1,n1(x1)bm2,n2(x2)bm3,n3(x3)

× e−ikm,n·x1e−ikm1,n1 ·x1eikm2,n2 ·x2eikm3,n3 ·x3

×G(x − x1)δ(x2 − x1)δ(x3 − x1) dx1,2,3

= 2π
−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

×

∫
b∗

m1,n1(x1)bm2,n2(x1)bm3,n3(x1)

× ei(km3,n3+km2,n2−km1,n1−km,n)·x1G(x − x1) dx1. (31)
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Combining the LHS and RHS, as well as introducing bm,n = Bm,n
e−iωm,nt , gives the final result:

i

∂Bm,n

∂t
+ cgm,n · ∇Bm,n


+

D(xx)m,n

2
∂2Bm,n

∂x2

+D(xy)m,n
∂2Bm,n

∂x∂y
+

D(yy)m,n

2
∂2Bm,n

∂y2

=

−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× 2π
∫

B∗

m1,n1(x1)Bm2,n2(x1)Bm3,n3(x1)

× eiθG(x − x1) dx1, (32)

where θ = (km3,n3 + km2,n2 − km1,n1 − km,n) · x1 − (ωm3,n3 +

ωm2,n2 −ωm1,n1 −ωm,n)t . An alternative representation of (32)may
be obtained by using the convolution theorem∫

f (x1)h(x − x1) dx1 = 2πF −1
{F {f }F {h}} , (33)

which gives

i

∂Bm,n

∂t
+ cgm,n · ∇Bm,n


+

D(xx)m,n

2
∂2Bm,n

∂x2

+D(xy)m,n
∂2Bm,n

∂x∂y
+

D(yy)m,n

2
∂2Bm,n

∂y2

= (2π)2
−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× F −1 
F


B∗

m1,n1(x)Bm2,n2(x)Bm3,n3(x)e
iθ F {G(x)}


. (34)

For some applications it may be more convenient to write the
equation in wavenumber space, i.e.

∂ B̂m,n

∂t
= −i


cgm,n · km,n + k2x

D(xx)m,n

2
+ kxkyD(xy)m,n + k2y

D(yy)m,n

2


B̂m,n

− i(2π)2
−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× F

B∗

m1,n1(x)Bm2,n2(x)Bm3,n3(x)e
iθ g(k). (35)

Moreover, one may also include exact linear dispersion in (35) by
replacing the Taylor expansion in (22)with the exact function. Thus

∂ B̂m,n

∂t
= −i


ω(km,n + k)− ω(km,n)


B̂m,n

− i(2π)2
−
m1,n1

−
m2,n2

−
m3,n3

T (km3,n3 + km2,n2

− km1,n1 , km1,n1 , km2,n2 , km3,n3)

× F

B∗

m1,n1(x)Bm2,n2(x)Bm3,n3(x)e
iθ g(k). (36)

2.3. Asymptotic considerations

The derivation of the original Zakharov equation (2) is based
on the existence of a small dimensionless parameter ϵ̃ related to
the wave steepness, which is based on the total energy and the
spectral peak wavenumber. From (2), one can write b̂(k, t) =

B̂(ϵ̃2t)e−iω(k)t , since b̂ = O(ϵ̃). In the derivation of the LZE we
have introduced an additional small dimensionless parameter
1̃, through the definition of the window functions, given in
Appendix A, which is the ratio of the window width 1 to the
spectral peak wavenumber. Substituting bm,n = Bm,ne−iωm,nt and
b̂ = B̂e−iωt into (19) gives

Bm,n(x, t) =
1
2π

∫
B̂(k, t)g(k − km,n)

× ei[(k−km,n)·x−(ω−ωm,n)t] d k. (37)

The narrowness of the window functions and the structure of (37)
render

Bm,n(x, t) = Bm,n(1̃(x − cgm,nt), ϵ̃
2t). (38)

Referring to the various terms in the LZE (32) as advective (the
first two on the LHS), dispersive (the last three terms on the LHS)
and nonlinear (the RHS), we note the following. (i) The combined
advective terms are of order ϵ̃3, (ii) each of the dispersive terms, as
well as their combination, are of order ϵ̃1̃2, and (iii) the nonlinear
term is of order ϵ̃3. Thus consistency imposes the restriction:
O(1̃/ϵ̃) ≤ 1. In our following numerical examples, we have taken
O(1̃/ϵ̃) = 1. It is reassuring to note that the LZE (32) reduces back
to the original Zakharov equation for B̂(k, t)when one lets1 → 0.

3. Numerical implementation of the localized Zakharov
equation

In the following, we present numerical simulations with the
LZE, and perform comparisons with other numerical models in
order to validate the LZE and its numerical solution. For this
purpose, we solve the equation numerically in a periodic one-
dimensional domain. This relatively simple numerical method
enables us to validate the LZE by comparing it with other well-
established models: a modified nonlinear Schrödinger equation
and the Zakharov equation (ZE). We anticipate that the solver can
be easily extended to two horizontal dimensions and to allow for
other types of boundary conditions. This is left for future studies.

3.1. Numerical method

Since we impose periodic boundary conditions, we can make
use of the discrete Fourier transform (fft routines) to switch
between physical space and wavenumber space. In this case, it
is convenient to use the LZE in the forms given in (35) and (36),
where the spatial derivatives in (32) are calculated using Fourier
transforms.

The integration in time is performed using a variable time
step Runge–Kutta scheme (ode45 in Matlab). The accuracy of
the numerical solution is controlled internally by the solver in
agreement with pre-chosen relative and absolute error tolerances.
The solver chooses the time step so that the error in the solution at
every time step is smaller than the error tolerances.

In order to represent the localized variables Bm,n(x) numeri-
cally, discrete versions of the k-plane and x-plane are introduced.
The part of the wavevector plane described by kxmin ≤ kx ≤ kxmax
and kymin ≤ ky ≤ kymax is discretized by an evenly spaced gridwith
nx × ny grid points. The discrete wavenumber vector is written as

kp,q =

kxmin + p1kx, kymin + q1ky


,

p = 0, . . . , nx − 1, q = 0, . . . , ny − 1, (39)

where the spacings between the discretization points are given by

1kx =
kxmax − kxmin

nx − 1
, 1ky =

kymax − kymin

ny − 1
. (40)

The corresponding discrete x-plane becomes

xp,q = (p1x, q1y), p = 0, . . . , nx − 1, q = 0, . . . , ny − 1, (41)
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where the grid spacings in the x domain are

1x =
2π
1kxnx

, 1y =
2π
1kyny

. (42)

3.2. Initialization of the localized variables

As an initial condition, one needs theM ×N localized variables
Bm,n(x) at t = 0. These are easily obtained from (19) if one knows
the amplitude spectrum b̂(k, t = 0). The variable b̂(k, t = 0) is
typically chosen so that it corresponds to a specific surface
displacement or a specific wave spectrum.

Further, one needs to specify the window function g(k). Some
possible choices of window functions are discussed in Appendix A.

One also has to choose the centers km,n of the M × N localized
variables (bins) used to represent the full spectral amplitude b̂(k).
It turns out to be convenient to choose the bin positions km,n so
that they coincide with points in the finer grid kp,q. This requires
that
1x = lx1kx, 1y = ly1ky, (43)
where 1x and 1y are the spacings between the bin centers km,n
in the kx and ky directions, respectively, and where lx and ly are
integers.

In general, one would expect the approximations applied in the
derivation of the LZE to be increasingly accuratewith an increasing
number of localized variables (larger M and N). The effect of
the number of localized variables on the accuracy is investigated
through numerical simulations in Section 4.

3.3. Efficiency of the numerical solver

By far the most computationally demanding part of solving
the equation is evaluating the integral on the RHS of (32) at each
integration step. Since the integral is located inside the sums, one
has to evaluate O(M4N4) integrals.

However, the window functions g , which are narrow banded,
can be chosen to be nonzero on a compact support, in a way
that there is overlap at most with neighboring windows. One can
show that this will greatly limit the number of interactions across
windows, to sets for which m + m1 ≈ m2 + m3 and n + n1 ≈ n2
+ n3. In the case that the window functions are non-overlapping,
i.e. g(k) = 0 for |kx| > 1x/2, |ky| > 1y/2, it can be shown that it is
sufficient to evaluate the triple sum on the RHS for combinations
where |m3 + m2 − m1 − m| ∈ {0, 1} and |n3 + n2 − n1 − n| ∈

{0, 1}. Correspondingly, for cases where a window function only
overlaps with its closest neighbors, i.e. g(k) = 0 for |kx| > 1x,
|ky| > 1y, it is sufficient to account for |m3 + m2 − m1 − m| ∈

{0, 1, 2, 3} and |n3 + n2 − n1 − n| ∈ {0, 1, 2, 3}. In these two cases
it can be shown that the number of combinations reduces to
approximately 2dM3N3 and (14/3)dM3N3, respectively. For two
horizontal dimensions, set d = 2. For onehorizontal dimension, set
d = N = 1. In Appendix A, several examples of window functions
are discussed.

4. Validation

In order to validate the LZE, and to test the numerical solver, a
number of validation tests have been performed. For this purpose,
two different types of initial spectrum have been employed: a
narrow Gaussian spectrum and a broad Pierson–Moskowitz (PM)
spectrum. These two spectra have the forms

SG(k) =
ϵ2

2k2cσ
√
2π

exp


−
(k − kc)2

2k2cσ 2


, (44a)

SPM(k) =
α

k3
exp


−

5
4
(k/kc)−2


. (44b)
Fig. 1. The two types of initial spectra: Gaussian spectrum (solid line), PM spectrum
(dashed line).

Here, ϵ is the steepness of the waves, defined by ϵ = kc

2η2,

where the overbar denotes averaging. For both spectra, the total
energy was chosen so that the wave steepness ϵ = 0.1. Thus, α in
(44b) was chosen in order to give ϵ = 0.1. The width parameter σ
in the Gaussian spectrum (44a) was set to 0.1. The phases were
chosen randomly on the interval [0, 2π). The two spectra are
shown in Fig. 1.

To represent the narrow Gaussian spectrum, the part of the k-
axis k ∈ (0, 2kc) was discretized using nx = 122 grid points. For
the broader PM spectrum, the k-axis was resolved up to k = 4kc
using nx = 242 points. One should note that, since the basic
unknown of the LZE corresponds to the free-wave part of the wave
field only, the grid does not need to represent the higher harmonic
bound modes. Therefore, a smaller part of the k-axis may be used
compared to other methods which have the full wave field (both
free and bound modes) as their unknowns.

In the following, these two initial spectra are used in various
test cases in order to validate the LZE and to check its performance
compared to other models. In order to investigate the effect of
the number of localized variables M , different values of M are
employed.

The results presented in the following have been obtained using
a cos-type window function (see Appendix A for details). Some
preliminary testing showed that overall the cos window showed
the best performance, taking accuracy and efficiency into account.

4.1. Comparison with other models

In the derivation of the LZE, both the linear and nonlinear parts
of the original Zakharov equation are approximated by using the
narrowness of the localized variables. These two approximations,
appearing on the LHS and RHS of (32), respectively, may be
tested separately in order to identify the error introduced by each
approximation. This is performed by comparing the evolution of
a specific initial condition using both the LZE and the ZE. For
information about the numerical implementation of the ZE, see
e.g. [8]. In addition, comparison with a higher-order nonlinear
Schrödinger model is also presented. The nonlinear Schrödinger
model employed in the following is the Dysthe equation [9], with
additional exact linear dispersion (EMNLS equation) [10].

We note that although exact linear dispersion could be included
in the LZE when using the present numerical model, it is still
of interest to consider the approximation of the linear part. For
example, in some applications, onemay need to employ a different
numerical approach (e.g. nonperiodic boundary conditions), where
the form (32) of the LZE must be employed. Therefore, it is useful
to check the effect of truncated linear dispersion in addition to the
approximation introduced in the nonlinear part of the equation.
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Fig. 2. Surface elevation at t = 1000Tp obtained using the linear LZE without ex-
act linear dispersion and the linear ZE. Upper part: Gaussian initial spectrum; left:
linear LZE with M = 11 (dashed line) compared to linear ZE (solid line), right: lin-
ear LZE with M = 21 (×) compared to linear ZE (solid line). Lower part: PM initial
spectrum; left: linear LZE with M = 21 (dashed line) compared to linear ZE (solid
line), right: linear LZE withM = 41 (×) compared to linear ZE (solid line).

Fig. 3. The time evolution of Drms defined by (45) calculated from the difference
between the result from the linear ZE and the linear LZE. Left: Gaussian initial spec-
trum (solid line, M = 11; dashed line, M = 21). Right: PM initial spectrum (solid
line, M = 21; dashed line,M = 41).

In order to test the linear approximation in the LZE, we turn
off the nonlinear terms in both the ZE and in the LZE, i.e. exclude
the RHSs of (2) and (32), and consider the evolution of the same
initial condition using the two models. Fig. 2 shows the surface
elevation obtained from simulation with the linear LZE (using the
two different values of M) compared to the corresponding result
from the linear ZE after an evolution time of 1000Tp, Tp being the
peak wave period. The upper part of Fig. 2 shows the result from
the Gaussian initial spectrum, while the lower part corresponds to
the PM spectrum. In Fig. 3, a normalized rms value, Drms, of the
difference between the obtained results is shown. We define Drms
as

Drms =


(η1 − η2)2

D0
, (45)

where the overbar represents averaging over x, and where D0
is the expected value of the numerator in (45) if η1 and η2 are
uncorrelated so thatη1η2 = 0. Ifη1 andη2 have the same steepness
ϵ, one can show that D0 = ϵ/kc . Hence, Drms = 0 means that η1
= η2, while Drms ≈ 1 means that η1 and η2 are uncorrelated. The
expression for η(x, t) in terms of Bm,n(x, t) is given in Appendix B.

From Figs. 2 and 3, we note that the differences between the
results obtained using exact linear dispersion (linear ZE) and the
truncated linear dispersion (linear LZE) are fairly minor. Even
Fig. 4. The time evolution ofDrms calculated from the difference between the result
from the ZE and the LZE. The difference between the ZE and the EMNLS is shown
by the dotted line. Left: Gaussian initial spectrum (solid line, M = 11; dashed line,
M = 21). Right: PM initial spectrum (solid line,M = 21; dashed line,M = 41).

after t = 1000Tp the results are very similar. The approximation is
better for the largest value ofM . This is expected, since the accuracy
of the Taylor expansion (22) is best close to the bin centers km,n.

We now perform a similar testing of the full LZE, including the
nonlinear term in (32). In addition to the comparison with the
ZE, we also perform a comparison with the nonlinear Schrödinger
model (the EMNLS equation). Fig. 4 shows how the LZE and
the EMNLS compare to the full ZE, in terms of the rms value
Drms. In both cases, Drms, calculated from the solutions of the
LZE, approaches 1 after about 300–400 wave periods. As for the
linear case, the results are somewhat better when using a larger
number of bins. Based on the evolution of Drms, we note that the
LZE performs comparably to the nonlinear Schrödinger model for
the narrow Gaussian spectrum. Not surprisingly, the nonlinear
Schrödinger model performs rather poorly for the broader PM
initial spectrum.

When considering the decorrelation of the solutions shown in
Fig. 4, one should recall that in the LZE the interaction coefficients
T0,1,2,3 are approximated by Taylor expansions around the bin
centers. That is, all modes falling within one bin are assigned with
the interaction coefficients corresponding to the bin centers. By
treating the simple case of a Stokes wave, one can show that Drms
is expected to approach 1 on the time scale t = O(1−3, ϵ−21−1)
(see Appendix D for details), where 1 is the width of the window
functions and ϵ is the wave steepness. However, as noted in [8],
the ‘predictability’ of the system is in any case limited by the
stochastization taking place on O(103) wave periods. Hence, the
results in Fig. 4 and the analysis in Appendix D indicate that for
sufficiently small 1 the approximation errors introduced by the
LZE do not significantly limit the time scale for which the LZE can
be used to predict a deterministic evolution.

4.2. Invariants

Another check of the accuracy of the numerical solutionmay be
obtained by considering invariants of the equation. We have not
succeeded in finding invariants for the new LZE. However, since
the LZE is derived starting from the ZE, we consider two of the
invariants of the ZE, the wave action and wave momentum, given,
respectively, by

I =

∫
|b̂|2 dk, J =

∫
k|b̂|2 dk. (46)

By using (B.2), one can show that, in terms of the variable in the
LZE, B̂m,n , (46) can be written as

I =

−
m1,n1

−
m2,n2

∫
B̂m1,n1(k − km1,n2)B̂

∗

m2,n2(k − km2,n2)

× e−i(ωm1,n1−ωm2,n2 )t dk, (47a)
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Fig. 5. Relative variation (in per cent) of the wave action for the Gaussian initial
spectrum usingM = 41 bins.

Fig. 6. Maximum (circles) and average (squares) variation over 1000 periods of the
invariants (in per cent of initial values) as a function of the bin width1 used in the
numerical simulation.

J =

−
m1,n1

−
m2,n2

∫
kB̂m1,n1(k − km1,n2)B̂

∗

m2,n2(k − km2,n2)

× e−i(ωm1,n1−ωm2,n2 )t dk. (47b)
As an example, the relative deviation of the wave action, in

per cent from the initial value, for the case of a Gaussian initial
spectrum usingM = 41 bins is shown in Fig. 5. As indicated by the
figure, there is no increasing or decreasing trend for the invariants,
but merely fluctuations around the initial value. The magnitude
of these fluctuations is found to depend on the number of bins
used in the LZE. This is not surprising, since the accuracy of the LZE
improves with decreasing bin width 1. Note that, as 1 → 0, the
LZE reduces to the ZE. The accuracy of the invariants as a function
of 1, obtained using M = 11, 21, 41 and 61 bins in the case of
Gaussian initial spectrum, is shown in Fig. 6. The circles and squares
show themaximumand average variation over 1000 periods of the
invariants, respectively.

4.3. Evolution of the wave spectrum

In this section, we use the LZE to investigate the nonlinear
evolution of the wave spectrum for our two test cases. By
performing 100 realizations of the same initial spectrum, but with
different random phases, the wave spectrum can be estimated as
an ensemble average of the 100 realizations.

Fig. 7 shows the estimated spectra at three different times
(t = 0, t = 100Tp and t = 1000Tp) obtained using the LZE for two
different values of M as well as the ZE. As is clear from the figure,
the different models all predict the same features of the wave
spectrum.

During the first part of the nonlinear evolution, the narrow
Gaussian spectrum broadens and stabilizes in a more broad state;
note that the spectrum is more or less identical at t = 100Tp and
t = 1000Tp. One also sees a small downshift of the spectral peak.
These features are all consistent with other numerical experi-
ments [11]. For the PM spectrum much less happens, and the
spectrum remains very close to its initial shape throughout the
evolution. This is also expected, and is consistent with other
results [12].
5. Discussion

A new equation for the nonlinear evolution of water-wave
fields has been developed, and has been given the name Localized
Zakharov Equation (LZE). The validity of the LZE has been carefully
checked by three different tests, all based on comparison with the
Zakharov equation, andwas found satisfactory. All three testswere
applied to a narrow-banded sea as well as a broad-banded sea.

The first test compares individual solutions obtained from
numerical simulations with the ZE, the LZE and a nonlinear
Schrödinger model. The difference between the individual solu-
tions is represented by Drms—the root mean square normalized de-
viation of the free surface. We find that the solutions diverge and
Drms approaches unity after about 300–400 typical wave periods.
This result is consistent with the error introduced by the approxi-
mation of the interaction coefficient in the LZE. A simplified exam-
ple to illustrate this is presented in Appendix D.

We did not succeed in finding invariants for the new LZE. How-
ever, in our second test of the LZE, we demonstrate that the wave
action and wave momentum only deviate slightly from their ini-
tial values throughout the evolution, i.e. over a duration of 1000
peak periods. The magnitude of the deviations decreases signifi-
cantly with decreasing width of the window functions in the LZE.

In the third test, we have shown that the performance of the LZE
cannot be distinguished from that of the Zakharov equation when
the evolutions of wave spectra, obtained from ensemble averaging
over 100 realizations, are compared. The results for the narrow
spectrum are very similar to those of [11], and those for the broad
spectrum agree with [12].

We believe that the thorough validation presented herein puts
the LZE on firm ground. Note that the earlier attempt to derive a
similar model equation is given in [7], where they derived a dis-
cretized Zakharov equation (DZE). Their derivation suffered from
a scale-separation error, and produced a result of restricted
value. The relation between the LZE and the DZE is presented in
Appendix C.

The LZE is more cumbersome than the original Zakharov equa-
tion. However, it has the potential to handle spatially inhomo-
geneous problems, in a more physically transparent fashion than
its ‘mother’ equation. In particular, it is suitable for handling fu-
ture challenges, which fall under the category of ‘deterministic sea
wave prediction’. Note that the LZE is hybrid in the sense that it re-
sides in both the physical, (x, y), and wavenumber, (kx, ky), planes.
It is defined on a discrete set of points in the wavenumber plane,
and on some part of the continuous physical plane. The hybrid
nature of the LZE enables us to introduce a variety of boundary
and free-surface features such as wave-makers, absorbing layers
and inhomogeneous wind influences. The types of applications of
the LZE, ordered by their increasing complexity are (i) a numerical
wave flume, (ii) a numerical wave wind tunnel, (iii) a numerical
wave basin, and (iv) deterministic short-range sea-wave predic-
tion, to improve autonomous navigation of watercraft.
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Appendix A. Window functions

For any practical application of the LZE, a window function
g(k) must be chosen. The formal requirements of the window
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Fig. 7. Evolution of wave spectra obtained from ensemble averaging over 100 runs with different random phases. Upper row: Gaussian initial spectrum; lower row: PM
initial spectrum. The solid gray lines show the initial spectra (t = 0), solid black lines correspond to t = 100Tp , and the dotted lines correspond to t = 1000Tp .
functions are that they must be sufficiently localized, i.e. g(k) is
only nonzero in the vicinity of k = 0, and satisfy the normalization
criterion (17). In addition, as mentioned in Section 3.3, when it
comes to numerical efficiency, it is an advantage if the window
functions satisfy some overlapping properties, e.g. that a window
only overlaps with its closest neighbors.

When choosing the type ofwindow function, it is also important
to have in mind that the purpose of the window functions is to
extract information of a function around a certain location. Also,
it is clear that every window function applied in wavenumber
space corresponds to a certain window in physical space; see
e.g. (32). Therefore, it is expected that a window function that is
well localized in both physical space and wavenumber space is a
good choice.

In the following, we present four possible choices of window
function. For convenience, we only consider their one-dimensional
versions. The four types of window function, and their correspon-
dences in physical space, are shown in Fig. A.8.

A.1. Square window

A square window with width1 has the form

g(k) = h


k
1


, G(x) =

1
√
2π

sinc

x1
2


, (A.1)

where

h(x) =

1, |x| <
1
2

0, otherwise
and sinc(x) =

sin x
x
. (A.2)

Pros: No overlapping between windows, satisfies the normaliza-
tion criterion exactly and is easily interpretable in wavenumber
space. Cons: Not well localized in physical space.

A.2. Sinc window

g(k) = sinc

πk
1


, G(x) =

1
√
2π

h

x1
2π


. (A.3)

Pros: Satisfies the normalization criterion exactly and is eas-
ily interpretable in physical space. Cons: Not well localized in
wavenumber space and does not satisfy any overlapping proper-
ties.

A.3. Gaussian window

g(k) =
1

σ
√
2π

exp


−
k2

2σ 2


,

G(x) =
1

√
2π

exp


−
σ 2x2

2


.

(A.4)

Pros:Well localized in both physical andwavenumber space. Cons:
Does not satisfy the normalization criterion exactly, but almost
for carefully chosen 1 and σ . Does not satisfy any overlapping
properties.

A.4. Truncated cos window

g(k) =
1
2

[
1 + cos


πk
1

]
h


k
21


,

G(x) =
1

√
2π

sinc (x1)

1 −
 x1
π

2 . (A.5)

Pros: Well localized in both physical and wavenumber space. In
addition, it only overlaps with its closest neighbors and satisfies
the normalization criterion exactly.

Appendix B. Reconstruction of η

The solution of Eqs. (32)–(36) gives the variable Bm,n = bm,n
eiωm,nt . From (20), we see that the original Zakharov variable,
b̂(k, t), and its inverse Fourier transform, b(x, t), can be expressed
as

b(x, t) =

−
m,n

Bm,n(x, t)ei(km,n·x−ωm,nt), (B.1)

b̂(k, t) =
1
2π

∫
b(x, t)e−ik·x dx

=
1
2π

∫ −
m,n

Bm,n(x, t)ei(km,n·x−ωm,nt)e−ik·x dx

=

−
m,n

B̂m,n(k − km,n, t)e−iωm,nt . (B.2)
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Fig. A.8. Window functions g(k) (left) and their correspondences in physical space
G(x) (right). From top to bottom: square, sinc, Gaussian and truncated cos.1 = 0.2
(solid line),1 = 0.4 (dotted line),1 = 0.6 (dashed line).

The relation between b̂(k, t) and the surface elevation η is given
by

η(x, t) =
1
2π

∫ 
ω

2g

1/2

b̂(k, t)eik·x dk + c.c. (B.3)

Inserting (B.2) into (B.3) finally gives

η(x, t) =
1

(2π)2

∫∫ 
ω

2g

1/2 −
m,n

Bm,n(x1, t)ei(km,n·x1−ωm,nt)

× e−ik·(x1−x) dx1dk + c.c

=

−
m,n

∫ 
ωm,n

2g

1/2

Bm,n(x1, t)
× ei(km,n·x1−ωm,nt)δ(x1 − x) dx1 + c.c

=

−
m,n


ωm,n

2g

1/2

Bm,n(x, t)ei(km,n·x−ωm,nt) + c.c. (B.4)

Note that in our reconstructionwe exclude the effect of the higher-
order bound modes.

Appendix C. Discretized Zakharov equation

The discretized Zakharov equation obtained in [7] can be
derived from the LZE by the following two steps.

(i) Start from (32), and replace B∗
m1,n1(x1)Bm2,n2(x1)Bm3,n3(x1) on

the RHS by B∗
m1,n1(x)Bm2,n2(x)Bm3,n3(x), so that they can be taken

outside the integral, which then simplifies so that∫
ei(km3,n3+km2,n2−km1,n1−km,n)·x1G(x − x1) dx1

= ei(km3,n3+km2,n2−km1,n1−km,n)·x

×

∫
e−i(km3,n3+km2,n2−km1,n1−km,n)·ξG(ξ) dξ

= 2πei(km3,n3+km2,n2−km1,n1−km,n)·x

× g(km3,n3 + km2,n2 − km1,n1 − km,n). (C.1)

(ii) g(k) is taken as (A.1); then g(km3,n3 + km2,n2 − km1,n1 − km,n)
can be replaced by δk(km3,n3 + km2,n2 − km1,n1 − km,n), where δk
denotes the Kronecker δ, and (32) renders

i

∂Bm,n

∂t
+ cgm,n · ∇Bm,n


+

D(xx)m,n

2
∂2Bm,n

∂x2

+D(xy)m,n
∂2Bm,n

∂x∂y
+

D(yy)m,n

2
∂2Bm,n

∂y2

= 4π2
−
m1,n1

−
m2,n2

−
m3,n3

T (km,n, km1,n1 , km2,n2 , km3,n3)

× B∗

m1,n1(x)Bm2,n2(x)Bm3,n3(x)
× δk(km,n + km1,n1 − km2,n2 − km3,n3)

× ei(ωm,n+ωm1,n1−ωm2,n2−ωm3,n3 )t . (C.2)

Given the fact that Bm,n here is (1/2π)2 times the Bm,n of [7],
one can see that (C.2) is identical to Eq. (28) in [7], which is the DZE.

Note that step (i) above requires a slow variation of Bm,n with
x. This occurs for spectra which are nonvanishing only in the
vicinities of km,n, thus restricting the applicability of the DZE
significantly.

Appendix D. Evolution of a Stokes wave

The ZE (2) has the following solution:

b̂(k, t) = b0e−iΩ0tδ(k − k0), Ω0 = ω0 + T0b20, (D.1)

where ω0 = ω(k0) and T0 = T (k0, k0, k0, k0). For t = 0, one
has b̂(k, 0) = b0δ(k − k0). Assuming that k0 falls within the bin
(M,N), and applying the window (A.1) for simplicity, we find the
corresponding initial condition in terms of variables of the LZE:

bm,n(x, 0) =


b0
2π

ei(k0−km,n)·x, (m, n) = (M,N)

0, (m, n) ≠ (M,N).
(D.2)

Based on (D.2), we assume a solution to the LZE (6) in the form

bm,n(x, 0) =


b0
2π

e−iΩM,N tei(k0−kM,N )·x, (m, n) = (M,N)

0, (m, n) ≠ (M,N).
(D.3)
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Substituting (D.3) into the LZE yields

ΩM,N = ω0 + TM,Nb20 + O(13), (D.4)

where TM,N = T (kM,N , kM,N , kM,N , kM,N), and where 1 is the
width of the bins, i.e. |k0 − kM,N | = O(1). From (3) and (D.1), one
now finds

ηZE =
1
π


ω0

2g

1/2

b0 cos(k0 · x − ω0t − T0b20t). (D.5)

Correspondingly, (5) together with (D.3) and (D.4) gives

ηLZE =
1
π


ωm,n

2g

1/2

b0 cos(k0 · x − ω0t − TM,Nb20t

+O(13)t). (D.6)

By using (45), one finds that Drms corresponding to the solutions
(D.5) and (D.6) is given by

Drms = 1 − cos([Ω0 −ΩM,N ]t)+ O(12), (D.7)

where

Ω0 −ΩM,N = T0b20 − TM,Nb20 + O(13) = O(13, ϵ21). (D.8)

Consequently, Drms will approach unity on the time scale t =

O(1−3, ϵ−21−1).
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