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A simplified analytical model for a floating
breakwater in water of finite depth
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The performance of a box-1ype floating breakwater is studied. The implementation
of simplifying assumptions concerning the flow beneath a pontoon-type floating
breakwater, leads to an analytical solution of the two-dimensional linearized
hydrodynamic problem. Comparison of the analytical results with a numerical
sofution of the full linear problem shows good agreement over a wide range of

paramelers.

I INTRODUCTION

Floating breakwaters (FBs) are increasingly used in the
protection of small boat marinas."? One of the most
common FB types in use today is the pontoon or box-
type which has proven performance and is effective in
moderale wave conditions.* The two-dimensional lin-
earized hydrodynamic problem of a box-type structure
has been solved using various numerical methods.>*387

This paper presents an analytical solution for a sim-
plified problem, where all the interesting resuits: added
mass and damping coefficients, mooring forces, trans-
mission and reflection coefficients, are given by simple
analytical expressions,

Comparison with a numerical solution of the full linear
problem shows good agreement for a large range of
parameters. The effects of the FB’s dimensions and
mooring stiffness in the case of finite water depth are
studied and several practical conclusions are presented,
Notably, the pontoon-type FB is found to perform very
well in water of intermediate depth.

2 FORMATION OF THE MATHEMATICAL
PROBLEM

We consider a long pontoon with a rectangular cross-
section. Let 28 be its breadth and 4 its draft at rest. The
FB is free to oscillate in three modes of motion: sway,
heave and roll. A Cartesian coordinate sysiem is chosen
with the origin and the x—y-coordinates in the undis-
turbed free surface, and the z-axis points vertically
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upwards (see Fig. 1). The water depth is 4 and the clear-
ance between the FB’s bottom and the sea bed is
S(S = h-d).

As usual the flow is assumed to be inviscid, irrotaiional
and periodic, and the velocity potential is

O(y,z, 1) = Reld(y z)e"] oy
where i = /=1, 7 is the time and w is the angular
frequency.

The time-independent potential ¢( y, =) satisfied the
following boundary-value problem:

Laplace equation:

V'¢ = 0 in the flow domain )
Free surface condition:

9 4 onz = 0,150 > B where s = L (3)

gz g
Sea-bed condition:

9% = 0 onz=nh 4

dz
Rigid bedy condition:

3.

5?? = ¥p+n on the body surface (5

where Vy is the body’s velocity vector and n is a unit
normal to the body surface pointing out of the fluid, and
appropriate radiation conditions apply.

Following Newman’s® notation the potential may be
decomposed into four parts:

O(y,z, 1) = Re{[p;(y, 2} + ;X-qﬁi()', Hle )

(6)
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Fig. 1. Schematic illustradon of a rectangular cross-section
floating breakwater.

where ¢; is the time-independent potential due to an
incident wave scaitered by a fixed body and ¢,
(i = 2,3, 4) are the radiated potentials caused by unit
amplitude sway, heave and roll oscillations of the FB,
respectively. X] is the complex amplitude of the body’s
response motion in the ith mode. Each of the four sub-
problems 15 solved separately.

The body responses X, are found from the equations of
motion of the FB, where all four modes interact with
each other.

3 ANALYTICAL SOLUTION

In region I the flow potential function is the sum of a
particular soluiton sausfying egns (2), {(4) and (5) and a
homogeneous solution satisfying

C.-({)-FQ:O ~Bgypg B —hsz5 —d
)T foje
i;—(f)=0 onz= —handonz = —d

(7)

Since the FB has a veriical symmetry plane, it is con-
venient 1o deal separately with flows that are symmetric
or antisymmetric about y = 0. The flows caused by sway
or roll are antisymmetric, while the heave flow is sym-
metric. The scattering flow may be decomposed into
symmetric and antisymmetric components; each can be
thought of as caused by two incident waves, one from the
right and one from the left side of the FB. The two waves
have the same length and amplitude and are phase-
symmetric or antisymmetric in the symmetric or anti-
symmetric scattering flows, respectively.
A general solution of eqn (7) will be of the form

A, = 1A, h (Q,y
oD _ { }Fﬁ Z{ }F,, {clos (QJ)} ©
B,y a=1 | B, sinh (O, 1}

for symmetric (S) or antisymmetric (A) flows respectively.
£,(n=10,1,...) is a complete set of orthonormal

"

functions in the interval {— /4, 0) given by:

Fyo= §7%, F = 285 cos [0,z + M),
0, = Eg,(n =1,2,..) 9)

For the limiting case of a long wave and a narrow gap,
in which the FB breadth (28), and the wavelength (), are
taken to be much greater than the gap below (S), we
may deduce from eqn (7), by scaling arguments, a sim-
plified solution which is the first expression on the right-
hand side of eqn (8), namely, a constant for symmetric
flows and a uniform flow potential in antisymmetric
flows.

Before the presentation of a detailed solution for each
of the sub-problems, we write the principal stages:

(a) Writing a general solution for the flow potential in
region [ as an eigenfunction expansion satisfying
eqns (2), {3) and (4).

(b} Writing an approximate solution, for the flow
potential in region 11, which consisis of an appro-
priate particular solution and an unknown
constant potential or constant horizontal velocity
as described above.

(c} Applying the horizontal velocity continuity con-
dition at y = — 8B, from which we express the
unknown coefficient of the eigenfunctions expan-
sion in region I in terms of the one unknown
constant of the flow potential in region II.

(d) Finding the unknown constant from an integral
momentum balance on the fluid in region II.

(e) After the flow potential is known, we can evaluate
the various quantities of interest as simple analytical
expressions.

Note that the second expression on the right-hand side of
eqn (8) contains modes which cause neither mass flux nor
momentum flux through the interface between the two
regions (y = —B, —h < z < —d); hence we expect
the effect of truncating these terms on the far-field pro-
perties to be minor.

Another way to check the validity of the approximate
solution is to compute the horizontal velocity on
y = —B8,—h < z < d from the lull linear theory, and
assess its uniformity.

For the dimensions B =/, § = O3k, (2B/S = 7)

the horizontal velocity amplitude variation s
Umax B Umin —~ o F p 3 —
T = 25% for an incident wavelength i/h = 8
mnax

and about 18% for 4/h = 12. The phase variation is less
than 2% in both cases.

We will see that for the guantities of interest, such as
hydrodynamic coefficients, exciting forces and trans-
mission coefficients, the resulting formulas predict values
which agree well with the correct ones through the full
range of wave numbers computed.
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3.1 The scattering problem

As was stated above, it i1s convenient to decompose the
scattering flow potential into symmetric and anti-
syimmetric components. A general solution in region I
which satisfied the Laplace equation, free surface and the
sea-bed boundary conditions will be of the form

© = Rel(¢® + ¢™)e ]

¢(3) — |:a7‘0 jlfo[eii(y-»-w + R(i)e—iku+t¥)}
bm

n=I

+ Z (b ) ety < —B (10)
n

By the definition of symmetry and antisymmetry about
y = 0, the flow potential to the right of the FB will take
the form
(D(+y’ z, [) = Re {[rp(s}(_};’ Z) - ¢(A)(—y1 Z}}e_iw‘}’
y =B (11)

fo (n=0,1,...) is a complete set of orthonormal
functions in the interval { — &, 0) given by

V2 cosh [k(z + #)]
ik + o ' sinh? (k)]

2 cos [k,(z + A)]
L= [I:/: cr"scin:(k,,hl)]”z’(n =ha.0 1

k Is the incident wave number which satisties the disper-
sion relation

o = k tanh (kh) (13)

JSo =

k, are the positive roots of the equation
g = —k,tan (kh) (i4)

It is easy to see from eqns (10) and (11} that in the far
field, |yt —» oo, we are left with propagating waves which
have the following complex amplitudes:

To the left of the FB

@5 + by correspond to the incident wave traveling to
the right,

ty9 RS + by RW correspond to the reflected wave tmval-
ing to the feft.

To the right of the FB:

arg R + b, R™ correspond to the transmitted wave

traveling to the right,

a, + by correspond to a wave which is traveling to the
left.

The last wave docs not satisfy the radiation condition
and hence must vanish.
Using the lincar relation between the flow potential
and the sea surface function:
o

= —g— = O
7 ga[ on z

we have

—lag
e = Py = 15
thyp 7.0 20f,(0) (15)
where « 1s the amplitude of the incident wave. The fixed
body reflection and transmission coeflicients are given by

R 3 A
o] = HE £ RY (16)

According to our assumption, the velocity potential in
region IT will have the form

® = Re[(wy + do)e ],

where ¢y, v are complex constants.
We apply the horizontal velocity continuity condition
aty = —8

~B<y<0 (17

g 5 {O —d<z<0 } 8
EQb(y*_)M v —h<z< —d (%)

Using the orthonormality of {f,} we can express the
unknown constants in eqn (7) in terms of v:

R = La, =0@n = 1,2,..) (19)
A IU(} . % .
R = 1 + kam b',’fr - k” ,(fl'. - l’z’ . ')
(20)
where
O, = [hd i =0,12..) @)

The uaknown, =z, will be found from an integral
momentum balance on the fluid in region II:

F o= [(P(~B2) ~ PB, 2] dz = mV,
m = 2pBS (22)

where P is the hydrodynamic pressure given by the
linearized Bernouili’s equation

o
P = —p—
| P {23)
Substituting eqns (19), (20), (10) and {23) in (22) we get
v = — ZZMUL’ T (24)
SB + 5—“— + Z k—

The fixed body transmission and reflection coeflicients
can now be calculated using eqns (16), (19), (20) and (24):
srfl
T = o lk . @5)
)
SB + iUs [k + }: -

ne| I'C

R =1-T

Note that the FB’s breadth appears only once in the
expression for the transmiission coefficient and it can be
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seen that the physical meaning of expanding the FB’s
breadth is increasing the inertia of the fluid beneath the
FB’s bottom.

The horizontal force and the moment about the center
of flotation, (p, z) = (0, 0) are calculated by integrating
the hydrodynamic pressure (eqn (23)) along the sides of
the FB; the resulting expressions are

Horizontal force:
F, = Re (fneiim{}a

S = daiop| Wy T W, — — Z — (26)
UO n=| kﬁ
Moment:
I, = Re (f?qc—i(w)v !

Sa = diwpay,

5y -~ Ik 2 UIW/;! 33
g {‘W‘”L T[W‘"Fa(n; 3 3)]}
where

W, = [ fdz, W = [ o (28)

In order to calculate the vertical force, we have to find the
symmetric potential in region I (which is the constant ¢
in eqn (17)); we apply an integral law of action and
reaction to the section —/1 € z € daty = — B, which
requires that the total forces acting on the left and right
sides of the section will be of the same magnitude and
opposite directions:

[0¢'dz = [¢ldz ony = -8 (29)
substituting ¢' and ¢ from eqns (10) and (17), respect-
ively, gives

2a:, Uy

S
Integrating the hydrodynamic pressure, eqn {23), on the
FB’s bottom, we find the vertical force:

Fy = Re (fne‘i"”), fn = Zwp Bu;, Uy/S  (31)

by = (30)

3.2 The sway problem

The sway potential is antisymmetric and the velocity
potential in region 1 will be of the form:

o
P by B
R N N Z by fue nlr ),y < —R
n=1|

(32)
In region II we assume a uniform and horizontal flow
potential: ¢ =
Applying horizontal velocity continuity on y = — B
we can express b, and b, in terms of v:

biy = —‘UU + — — iwW,)

L

2 Wy by = (U

Ll

33)

applying an integral momentum balance to the fluid in
region II, equ (23), and solving for z we obtain

o (U U -'Uo = Uy
== e e B _
¢ w(I :;I ( ku k )/( S * HZI rr

(34)

The hydrodynamic horizonta! force due to sway motion
is then found by integrating the hydrodynamic pressure,
eqn (23), on the FB sides:

F, = Re (fz:e—iwl):fzz = 2iﬂ)9(bz,0% + Z b!.n Wu)
a=1
(35)

and the moment about the center of flotation will be of
the form

Fu = Re (fue ™,

. ) . Bl
S = 25@9[‘(‘52‘0 We + 2 by, ?’Vn> + v “§‘:|
n=1
(36)
The general forces can be decomposed into mertia and
damping parts:
i = wla; + iob; (37)

where a; and b;, both real quantities, are known as the
added mass and damping coefficients.

3.3 The roll problem

In region I the antisymmetric velocity potential caused by
roll will be of the form:

d) — b4‘0ﬁjc“m(y+3) + Z b4‘”j'-[ek..(_r+m (38)

n=1

In region [T we add a uniform and horizontal flow poten-
tial to a particular solution of eqn (2) satisfying eqn (4)
and the body boundary condition

o¢ .
5, = Cloyz o= —d (39

This results in a flow potential of the form

iy

¢ = TS [ + 30 = 3(h + 2] + Cy (40)
where C is an unknown complex constant.
From horizontal velocity continuity on y = — B we
express b, and b,, in terms of -
iy, u,c
/)4,0 = AO + %J b-l..u = A'n + k" (4])
where
w {1 N s . ~
Ay = -7 ﬁ[(B + 7Y, = U] + Wy,
i |1 ) 5 -~ ~
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and

b = jj: (z + hYfdz (43)
the constant C is found from the integral law of action
and reaction (egn (29)):

C: B ! 3 3 Z
C = — [’%—(3- + 37— 8§+ AUy + ) A,,UH}/

n=1
ik = U7
(T t LT

n

+ BS) (44)
The hydrodynamic horizontal force caused by roll is

Fi o= Re(fue ™). fy = 2ickp (byoWy + ¥ by, 1)

23
n=]

(45)
and the moment about the center of flotation is:

Fu = Re(fue ™),

f-'—% = 2[.(‘9:0[_ (bi.(}l(i-/o + Z ‘b-l.n Pl—/r’r)

=1

3

iwh (B " 8
+6.S' (§+2hd—d)+C—3—} (46)

3.4 The heave problem

The heave problem is symmetric about the z-axis, and
according to our simplifying assumption the flow poten-
tial in region II is the sum of an unknown constant ¢,
and a particular solution satisfying the Laplace equation,
(eqn (2)}, sea-bed condition (eqn {4)) and body boundary
condition

c:_qﬁ = —jwy,z = —d (47)

Z
Thus we obtain
fto

e G s

35 -B<y<g0

(48)

In region | we have the symmetric potential of the form

EA
_ kU Ay k,r+B)
¢ - ai.ﬂﬁ)e e + Z (ST ' ¥ ~.“<‘ - B

n=|

(49)
Applying horizontal velocity continuity on y = — B, we
find a4 and «,, to be
wB, iwhB
Mo = g = - LS U, (50)
the constant ¢, is found by satisfying the integral law of
action and reaction, eqn (29), on the section y = — B:
wh

iy UL (S )

o= gt L k, T 35\3

(51)

Integrating the hydvodynamic pressure, eqn (23), on the
bottom of the FB, we find the vertical force due 1o the
heave motion

Fyy = Re (fie™™),

fo EBExgi+B:+S:
S RS 3

2B
+ iw (p —%2)52 UD') _ (32)

the heave added mass and damping coefficients are
defined by eqn {37) which, by comparison with egn (52).
yields

23(1_9 = U B+ Sf)

G PSSAE T T3
28 .
by = P‘A_,STUO' {53}

3.5 The combined problem

Afier solving the four sub-problems, amplitudes of the
body response X, X;, X in sway, heave and roll, respect-
ively, are found from the FB's equations of motion:

Horizontal motion:
[— @ (m + ay) ~ iwbhy + 5:)X,
— (@lay — iwby)X, = afy (54)
Vertical motion:
[—w*(m + a3;) — iwby + 2pgBlX, = afy,  (55)
Angular motion:
[—w'a, — iwby + (KG — dnw’]X,

+ [~ &' + ay) — iwbhy

+ mgGM[X, = afs, (36)
where S: is a linear spring constant modeling the mooring
systen, KG is the elevation of the center of gravity of the
FB above the keel, GM is the FB’s metacentric arm,
namely: the arm of the righting moment at small list, m
1s the FB’s mass (m = 2Bdp), and n1, is the FB's moment
of ntertia about the center of flotation.

The influence of the mooring forces on the vertical and
angular motions is neglected in eqns (55-56) since it is
usuaily small compared to the hydrostatic restoring
forces.

The transmission and reflection coefficients of the FB
problem are

Trg = L:')“ (2a,0T — Xobyy

+ Xyayy — X4b4,n)ﬂ)(0)872“ (57

2
}

iw .
= “; (2a7,oT + Kby + Xyasy + Ayby) fo(0)

(58)
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The horizontal drift force is given by Longuet-Higgins®

as
N 2kh
sinh (2k#)
(59}

Foc = 2201+ (R~ m=)[|

4 CONSISTENCY CHECKS
4.1 Confirmation by Haskind’s theorem

According to Haskind’s theorem (see Mei'®) the
amplitudes of the waves radiated by sway, heave and
roll motions are related to the horizontal, vertical and
angular exciting forces on a fixed body by the following
expressions;

fro = dikp ayb,, (60)
S = 4ikp fytlig (61)
fio = 4ikp dypbyg (62)

Substituting eqns (26) and (33) in eqn (60) or {31) and
eqn (30) in eqn (61), it is easy to see that the Haskind
relations for sway and heave are identically satisfied.

Substituting eqns (27) and (41) in eqn (62), it can be
shown that eqn (62) is not identically satisfied, but to the
order (x5} Hence the Haskind relation concerning roll
is approximately satisfied.

4.2 Comparison with numerical computations

The fulf linearized problem (without the implementation
of simplifying assumptions in region I} was sotved by the
method of eigenfunction matching. The solution in cach
region is expressed as a sum of eigenfunctions with
unknown coefiicients which are then found by satisfying
vetocity and pressure continuity at the region’s interface
(y = —B). Mei and Black'" used this method to solve
the scattering (by a fixed body) problem. Black et a/."
solved the general two-dimensional radiation problem,
The results obtained were the far-field properties only,
from which the wave forces on a stationary body were
caleulated using Haskind’s theorem. Agnon et "
solved the scallering and the sway sub-problems. A full
development of the sclution and numerical results which
include also the hydrodynamic coefficients in the three
modes of oscillation arc given by Drimer."

Forty eigenfunctions were used in region [ and 10
in region II in order to get accuracy better than 1%.
The finite sums appearing in the analytical solution
expressions were truncated after 40 terms.

Before comparing numerical resvlts of the approximate
method with the method of eigenfunctions matching, we
would like to make a theoretical comparison between the
two. Both of the methods use eqn (10) as a general
solution of eqns (2), (3) and (4) in region L.

In the exact method, the sum of a homogeneous sclu-

+Q B —

| | |
\ :
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. [ F )
| 4 |
A
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Fig. 2. Fixed and free body transmission coefficient, analytical

and numerical solution comparison. (Fixed: analytical] ——;

numerical + + +. Free: analytical ——; numerical x x x )
2B/h = 2, dlh = 07, GMh = 01, KGlh = 072,

tion, satisfying eqn (7), and appropriate particular solution,
satisfying eqns (2), (4) and (5), is the general solution in
region Ii, using horizontal velocity continuity between
the two regions, the coefficients of the eigenfunctions
expansion in region [ are expressed in terms of the gen-
eral solution in region I1, and then a pressure continuity
is written from which a system of linear eguations with
the unknown coefficients of the solution in region 11 is
obtained.

In the approximated method, instead of the generat
solution in region 11 we use an approximation which is a
particular solution that satisfies eqns (2}, (4) and (5), plus
an unknown constant for symmetric modes and a
uniform horizontal velocity potential for antisynunetric
modes. Instead of pressure continuity, we salisfy only an
integral momentum condition, which we can solve to find
explicitly the one unknown constant.

By scaling arguments the simplifying assumption was
shown to fit the case of small ($/28) and small (S/4). On
the other hand, for very short waves, compared to the FB
draft, the flow due to the waves is small at ihe depths of
the gap, z < —d, and hence for small (8/2B) the ana-
lytical solution is expected to fit the full linear solution
for the two limiting cases — very short and very tong
waves. The last argument will be verified in the following
section, using numerical results,

Figure 2 shows a comparison of the transmission
cocfficient. for a configuration that fits the assumption of
small S/28 (= 0-15), both models are in good agreement.
Figure 3 shows transmission coefficients comparison for
S/28 = 0-36, which is not so small; even in this case the
agreement 1s fairly good. The calculation of the trans-
mission coefficient requires the solution of all four sub-
problems and hence obtaining correct values confirms alf
the stages of the solution. Figures 4-8 show a com-
parison of the results obtained for each sub-probtem
separately,

We see that all the results associated with the horizontal
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Fig. 9. Transmission coefficient, (or various mooring stiffnesses.

(Free —1; mooring spring S;/pgh = 02 0—0; S,/pgh = 0-5

&—a; fixed +4.) 2Blh = 2, dlh = 07, GMjh = 01, KG/
h=072.
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Fig., 10. Transmission coeflicient, for various mooring stiff-
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++3 280 = 14, dlh = 0-5, GM}h = 01, KG/h = 0-48.
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Fig. 13. Horizontal drift force, for various mooring stiffnesses.

{Free 0—0; mooring spring S, /pgh = 0-2 0—0; S;/pgh = 05

a—a; fixed ++.) 28fh =2, dlh = 07, GM[h = 0-1, KG}
h =072 :

direction or sway motion are very good (in many cases
the curves overlap), the heave results are alse good and
the results associated with moments or roll motion have
bigger but stiil acceptable error. This is believed to be due
to the sharp corner of the FB’s cross-section. Note that
if the roll resonance frequency is not in the range of the
incident waves frequency, the combined problem will
hardly be affected by roll and hence good agreement is
achicved for transmission coefficients.

In the following section we use our results to study the
performance of FB’s in water ol intermediate depth and
its dependence upon the mooring stiffness.

5 FB PERFORMANCE AT INTERMEDIATE
WATER DEPTH

Figure 9 shows that in water of depth 10m, a 20 m wide,
7-m deep freely floating structure will transmit less than
25% of the energy flux in waves of up to 90m long.
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At the same water depth a freely floating structure with
14 m breadth and Sm draft will transmit less than 25%
of the encrgy flux tn waves not longer than 57 m (Fig. 10).
The energy flux associated with long waves is almost
uniform with deptl and hence in order to achieve good
protection we have to block a substantial part of the
witer depth.

The first example, shows the ability of a floating struc-
ture, with the dimenstons of a typical merchant vessel, to
provide a considerable protection against quite long
waves, We follow with the investigation of the mooring
forces required.

Figure 11 shows the exciting forces on a fixed body.
Note that all the quantities are nondimensionalized by
choosing the water depth # as the unit of length. the
gravity acceleration g as the unit of acceleration, and the
water density p as the unit of density.

For the case of 10-m water depth the horizontal force
will be of the erder of 10 ton per 1 m breakwater length
per { m wave amplitude, which is very large.

Figure 12 shows the horizontal force that will act on
mooring systems of various stiffnesses (presented by
linear spring constants). The curve shows the amplitude
of the force which oscillates about a mean drift force
shown in Fig. 13. For the case of 10-m water depth and
I-m wave amplitude. the drift force will be of the order
of T ton per l-m breakwater length, which is much
smaller than the oscillatory force.

From Figs ¢ and 12 together we can see that a com-
pliant mooring system (S, = 0-2) will hardly affect the
transmission coefficient as compared to a free body. A
stiff mooring system (S, = 0-3). which reduces the trans-
mission coefticient significantly causes large forces,
sometimes even {arger than those on a fixed body.

Hence, it seems that a practical solution for large
structures, would be a compliant moering system which
will react to the drift force only.

6 CONCLUSIONS

A simplifed mode! has been developed to solve analyti-
cally the two-dimensional linearized hydrodynamic
problem of a pontoon type FB. As a result, all the
hydrodynamic quantities of interest, given by simple
analytical expressions. become accessible for routine
engineering applications.

A compariscn of these results with a numerical
solution of the full linear problem, shows good agree-
ment for a wide range of parameters.

Results obtained here indicate that in intermediate
water depth an FB can provide good protection against
waves of wavelengths ranging up to a few times the width
of the structure, provided the clearance is small enough.

Our findings suggest that a flexible mooring system,
which reacts to the drift force only, is a more practical
solution for large structures.
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