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1. INTRODUCTION AND FORMULATION

The aim of this note is to provide quantitative
information regarding the induced mean flow under-
neath a water-wave packet. Exact solutions of the
cubic Schrodinger equation indicate that any initial
wave packet eventually evolves into a number of
envelope solitons and a dispersive tail. The bulk of
_ the energy is contained in the solitons, which have
solitary wave shapes and propagate with permanent
form once produced. Only wave packets having the
form of a single soliton are considered in the sequel.
Following Dysthe (1979) one can show that the
appropriate equations satisfied by the induced mean
flow potential ¢ (x, z,t) are
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where a is the wave amplitude at the peak of the
packet, » and k are the frequency and wave
number, related by the linear deep-water dispersion
relation o’ = gk.

The free surface elevation is given by
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Equations (1.1), (1.2) and (1.3) define a Neumann
problem in the lower half plane.

2. SOLUTION
1t seems helpful to use the following dimensionless
variables:
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Substitution of Eq. (2.1) into Egs. (L.1), (1.2) and
(1.3) gives
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The above problem was solved utilizing the Fourier
transform method, with the following result:
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A reader who would like to check this solution (by
substituting it back into the set of Eqgs. (2.2), 2.3)
and (2.4)) will find the following identity helpful:

sech’ = —2 20 (=20 + 203 @T)

see Eq. (3.64) in Carrier et al. (1966).
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Fig. 1. The wave-induced mean flow field.

3. RESULTS AND DISCUSSION
Let u and v be the induced mean flow velocity
components in the directions x and z, respectively.
From Eq. (2.5) and Eq. (2.1) one can show that
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The dimensionless stream function is given by
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Note that 27 _a;> =1 and that the first term on the

=

r.hs. of Eq. (3.3) was chosen to render ¥(0,0)=0.
The streamlines of the induced mean flow field are
shown in Fig. 1. The total flux, per unit width,
involved in this flow is given by
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This value is equal to the Stokesian mass transport at
the peak of the wave packet, as it should be.
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