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INTRODUCTION

A thin barrier of finite length in water of finite depth and infinite extent
(Fig. 1)is considered herein. An incident gravity wave, attacking the obstacle
from infinity, is deffracted and scattered by the thin barmer which is a satis-
factory representation of a detached breakwater of large length to thickness
ratio. The aim of the present work is to compute the waves potential energy
(i.e.,the wave height) in the region surrounding the obstacle. The maps of the
state of the sea near the barrier (Figs. 2 to 10) permit a sound evaluation of
the breakwater performance and, therefore, an improved design.

The computations are carried out first for a monochromatic incident wave
and an impervious obstacle. The solution is extended afterwards to the cases
of a pervious barrier and a random incident wave.

The present solution is compared with Wiegel’s (9) work on a barrier of
semi-infinite length and with Morse and Rubenstein (5) study of scattering of
electromagnetic waves.

BASIC EQUATIONS

As usual the flow is assumed to be inviscid and irrotational and velocity
potential
®(x,y,2,t) = ¢(x,v,2) exp (- fwt) (V =grad @) .......... (1)

satisfies Laplace equation
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FIG. 1.—VERTICAL CROSS SECTION AND VIEW OF OBSTACLE AND INCIDENT WAVE
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FIG. 2.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 90°, X #
1=10,2)
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FIG. 3.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 90°, )/!
= 0.5)

FIG. 4.-DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 90°, 3/!
= 1.0)
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FIG. 5.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 60°, /!
= 0.2) '
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FIG. 6.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 60°, 3/
= 0.5)
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FIG. 7.—~DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 60°, A/!
= 1.0)

Lo

FIG. 8.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE {8 = 30°, A/1
= 0.2)
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FIG. 9.—DIMENSIONLESS WAVE AMPLITUDE vEP/EP, NEAR OBSTACLE (8 = 30°, )/
= 0.5)
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FIG. 10.—DIMENSIONLESS WAVE AMPLITUDE VEP/EP, NEAR OBSTACLE (8 = 30°,
N1 = 1.0)
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in which x,y,2z = cartesian coordinates; { = time; and w = wave frequency.
The flow domain is of infinite extentin x, ¥ directions and of finite constant
depth. The barrier is characterized by its length /.
The boundary conditions satisfied by ¢ are as follows:

$ 220 (2= =R it (3)

on the bottom and
b,-06=0 (2 =0); 0 = — e e (4)
on the free-surfacé, after linearization.
The incident wave, attacking from infinity is described by

ol =a f,(z) exp (ikyp); p=xcos B +ysin B............ (5)

in which @ = constant related to the wave amplitude; 2, = 27/X = wave num-
ber; A = wave length; and f,(z) has the usual expression:

vZ ch [k (z + 7))
, i 7%
[h o+ 2 sh2 (klh)]

fl(z) =

It is customary to represent ¢ as the sum of the incident and scattered wave
potentials:

b= ol B e (7

The solution is rendered unique by requiring that at infinity ¢S represents
outgoing waves solely.

The last boundary condition, to be analyzed later, is the one prevailing
along the obstacle.

GENERAL SOLUTION

First, the problem is reformulated in terms of elliptical coordinates (2,5),
by using the transformation

x = EZ COSH 7 COS B v v i v v e e et it e e e ettt e e e e e (8a)
1 . \

y =3 SINR 7 SIN 0 v v v e e e e e e e e e e e e e e e e e e e e e e (8b)

2 T 2 e e e e e e e e e e e e e e e e e e e e (8¢)

The obstacle contour has now the simple equation» = 0. Following Refs. 3 and
4, the variables are separated:

S = Z(2) 0(0) R(7) « v vttt e o (9

and the general solution for ¢ (8) satisfying Egs. 2, 3, and 4 is obtained as
follows:

8

¢ = ol + [b;*n (2 Mel) (v,q,) cen (8,45
0

1

m



216 May, 1972 WW 2

* Z bFun Fn(2) Feky (v, - q,) ce, (6, - Qn):]

n=2

+ Z/ [bm F1(2) Nem (7,4q,) se,, (6,q,)
Z mn Fn(2) Geky, (7, - qn) Sep, (6, qn)] ............ (10)

in which b%,,, b%,,, 0y, ,andb,,, = unknown constants. The Mathieu functions
appearing in Eq. 10 have been selected such that ¢S satisfies the radiation
condition at infinity. The boundary conditions (Eqs. 3 and 4) are satisfied if

V2 cos [%llﬁ (z + h)]

z) = :

Fal2) 5 - 1 sin? [ 4q3/2 LAY R (11)

o l
(n =2,3..))
while eigenvalues ¢, fulfill conditions

1/2 1/2 1/2

g%_ tanh <4—q;— h> =0; gg;__ =By (12a)
1/2 1/2

ég%tan(%——h>=-o;n=2,3,... ............... (12b)

The incident wave may be also representedby a similar series(3) as follows:

(0,4;)

I 5w
) 2a fl(z) Z lCezm (7, ql) cezm(B, ql) Céom pzm(ql)

m=o
S (9, 99
+ Seum+2(75 1) Seom (B, q1) Seyp 4y
Som +2(44)

) 2
v [Cezm +1(7’ ql) Céam +1(:3, Ch) Ceom +1 ﬁlg(lzlj

0
+ Sezm—’rl(’r; ql) sezm+1(B, ql) sezm +1 —('_""q‘l)_] ........... (13)
32m+1(q1)

The unknown coefficients of Eq. 10 have now to be determined from the

boundary condition on the obstacle.

IMPERVIOUS BARRIER

General.—The boundary condition along the obstacle becomes in this case
¢,=0 (r=0; -h2=2z=0)........0.. 0.0 uiui... (14)

From Egs. 10, 13, and 14 and by using the orthogonality of the eigenfunctions
in the z and 4 directions
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J° F4(2) F3(2) d2 = B L. (15a)
—h

T

f se; (0, q) se;(9, q) d6 =05 T ... (15b6)

0

the following values of the coefficients are immediately obtained:

%, =bkim =bmn =0 o (16a)

bem+): = - 2aiSeyn (0, 41) Seym (8, 611:, (160)
szm +1(Q1) Nez(]in +1 (O> q1)

bemiz): = - 2a Seyy, 12(0, 4y) Seop 4n (8, 4) (16¢)

Sam +2(4y) Nez(% +2(0,4,)

Thus the complete expression of the velocity potential becomes, with the aid
of Egs. 1, 5, 10, and 16:

, ik p °° bm »
& =afy(z) emlle t v )\ =2 Neff) (r,q1)s€m (8, 41) :
n=1 (17a)
. itk p .
cafie ot [ 4 g etarE o)
in which
. 2 (om
£(6,7) = £farg(®) = ) - Nefy) (r,q)s€m, (6,4y) - - . .. .. (17b)
n=1
The free-surface elevation is given by
77=~l 8[Re ()] 2
gl % e .. (19)
= 222 £.(0) {sin (5, p - wt) + 18] sin [arg (&) - wtl} S
and the ratio between 71 and 7, (- the incident wave amplitude) becomes
1 < sin (Byp - wt) +1&1sin [arg (&) - ] .. ... L (19)

o

The potential energy of the waves results from the averaging of 1% over a
period. Therefore

EP(6,7) _ _n°

EP 1
0 5 Mo

=1+ 2&]cos [arg (&) - Byp] +1E12.. .. ... (20)

In the absence of the obstacle £ = 0 and EP(6,7)/EP, = 1, as it should be.
The solution given inthisparagraph is analogous tothat of the electromagnetic
potential (5). There are, however, two significant differences between Ref. 5
and the present work: (1) While in the electromagnetic and acoustic theories
one is interested mainly in the computation of the scattered wave far from the
obstacle, herein it is of paramount importance to determine the state of the
sea near the barrier, which is also a more difficult task; and (2) the range of
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ratios A/l has been extended in the present work below the minimum value
A/l = 0.7 considered in Ref. 5.

The potential  (Eq. 17)depends in a complex manner on the two parameters
A/l and B; /1 and 1,/1 appear in a simple manner in the coefficient in front
of the expression of @, in contrast with the case of a partially submerged ob-
stacle. The ratio VEP/EP, (Eq. 20) has been computed for different points of
the field for a few values of A/l (A/I = 0.2, 0.5, and 1.0) and 8 (8 = 30°, 60°,
and 90°).

In the extreme case of A/l — 0 the situation is similar to that of the geo-
metrical optics and a complete shadow is created beyond the barrier. Con-
versely, for A/l — o the obstacle behaves like a thin rod with little influence
on the incident wave.

The computation of VEP/EP, (Eq. 20) has been carried out by using the
Technion 1.B.M. 360/50 computer. The values of the Mathieu functions have
been determined with the aid of Refs. 1,3,and 6; VEP/EP, has been computed
for discrete points at the intersections of hyperbolas of constant 9 (8 =
0,0.27/2, 0.4n/2, ... ,m, 1.2n ... 2n)and ellipses of constant » (» = 0,0.17/2
..., 0.77/2). The results are given in tables which may be found in Ref. 8.
Herein the results are presentedin a graphical compact form in Figs. 2 to 10.

Analysis of Results.—For B = 90° (Figs. 2, 3, 4) the following conclusions
seem appropriate: (1) The breakwater creates a relatively still zone in its
shadow up to a distance of at least 2/3 of its length, normally to the axis; (2)
the lateral influence of the barrier is negligible; (3) the waves are amplified
upstream and they have the character of standing waves. Due to interference
the amplitude may, however,be larger thantwice the amplitude of the incident
wave; and (4) although generally the magnitude of the wave energy along the
downstream face decreases from the edges towards the center, the dropis not
monotonical, due to interference effect. For g = 60° (Figs. 5, 6, and 7) the
same conclusions as for 8 = 90° are qualitatively valid. In the case of B =
30° (Figs. 8, 9, 10) the effectiveness of the barrier in creating a still zone is
greatly reduced. In all cases the energy downstream decreases as A/I
decreases.

Comparison With Wiegel (9) Solution for Semi-Infinite Barrier.—Wiegel (9)
has derived a solution for a semi-infinite barrier and has given maps for the
state of the sea near the edge. The comparison with the present solution, which
is valid for an obstacle of finite length, shows that for 8 = 90° and A/I = 0.2,
the agreement between the two solutions is satisfactory up to two wave lengths
from the edge, i.e., the interference between the two edges is weak in this
zone. For B < 90° the agreement becomes poor as B decreases and in fact it
is difficult to separate the zones of influence of the two edges.

Comparison With Morse and Rubenstein (5) Solution.—The global coefficient
of energy scattering

_ 2 45

GC = fs 117 57

in which § = ellipse far from the obstacle, i.e., » — «, has been also com-

puted and compared with values found by Morse and Rubenstein (5) in the

limited range of A/I considered by them. The agreement being excellent it was

concluded that the numerical computations are quite accurate. The values of

GC may be found in Ref. 8, but they are of a minor significance in the case of
water waves.
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Review of Montefuso Work.—Montefuso (1968) has carried out an analysis
of the wave diffraction by an impervious breakwater. The present work sup-
plements, however, his results rather than duplicating them.

Montefuso has solved the problem for ratios A/l > 0.57 where herein the
smallest A/ = 0.2. The small ratio is particularly interesting in the case of
long breakwaters encountered frequently in applications. Moreover, the com-
putations are more elaborate in the latter case.

More important, the maps of the wave energy presented by Montefuso do
not cover the region in the vicinity of the breakwater,while Figs. 2 to 10 give
the detailed picture in the neighborhood of the obstacle. Thus, the two types of
maps supplement each other in describing the state of the sea around the
breakwater.

PERVIOUS BREAKWATER

To acquire some information on the influence of the permeability of the
breakwater’s body upon the wave transformation it was assumedthat(1) There
is no storage {consistent with the neglection of the thickness); and (2) the re-
sistance to the flow through the obstacle is linear in the velocity (Darcy’s
law). Thus

Viz,0=a,r=0=V(2z,8 =~ a7r=0 ............. (22qa)

01 GRS CEL A

in which K = hydraulic conductivity coefficient in Darcy’s law and B = width
of the breakwater. From Eq. 22 the following conditions are obtained:

I
[en}
—
Do
[
[~
S

b (2,0 =0, 7=0)=-0¢,&0=-0a7r=0 .......... (23a)
) 7(2,9 =Ofyél’r = 0) sin o = -Zgﬂg [¢(Z79 = - @ v = 0)
(2,0 = a, 7 = 0)] .. e (230)

The solution for ¢ in this case is still represented by Eq. 10. Also b%,,, = 0
and Eq. 230 is replaced by

(]5"[7(2,9, Y = O) = - ¢:S’r(z’97 Y = 0)
- Z;;K sin © ¢5(2,0,7 = 0) . vt e (24)

Multiplying Eq. 24 by f,(2) sin m#8, integrating along z and ¢ and using the
properties of f,(2) and Mathieu functions, one may obtain a linear system of
equations for the unknown coefficients b,,,. This system is infinite but maybe
solved approximately by truncation. As the purpose of the computations of this
section is to reach qualitative results, it was assumed somewhat artificially
that the ratio K/B varies along the barrier as

K _K, .
5 B——QO 5 (25)

i.e., the breakwater is less pervious at its center than at its edges. For this
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FIG. 11.—INFLUENCE OF DIMENSIONLESS PERMEABILITY COEFFICIENT £ ON
SCATTERING COEFFICIENT GC. FOR PERMEABLE BREAKWATER (/1=028
= 90°) '
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FIG. 12.—COMPARISON BETWEEN WAVE AMPLITUDE VvEP/EP, NEAR PERVIOUS AND
IMPERVIOUS OBSTACLE (B = 90°, »/7 = 0.2)

particular case the coefficients are obtained at once as follows:

b = - 2a Se' 0, S€ (am +2) (B 4;) BN, (1) 0 :
(2m +2)1 a e(2m+2)( q:) 3(‘11)(zm+z) (2 e<2m+2)( »dy)

+ Neloman) 0, @)]; (m = 0) ... . (26d)
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_ _ 9; 1 S€lom+) (B,494) 1. 1
b(2m+1)1 = - 2ia Se(2m+1) (0,4, S (2m +1) (4, [ZkNe(zmﬂ) (0,49,)

+ Neloma) (0, @)]; (m = 0) oo (26¢)

Eqgs. 26 are a generalization of the solutions for an impervious breakwater
(Eq. 16), the additional dimensionless parameter being

S (27)
Term % has the character of a damping coefficient for alinear oscillator. For
k£ = 0 the solution for animpervious barrier is recovered, while for 2 — « the
obstacle vanishes.

To study the influence of the magnitude of 2, computations have been carried
for B = 90°, A/l = 0.2, and different % values.

The variation of the global coefficient of energy scattering with %2 is given
in Fig. 11. The transition from an impervious obstacle (¢ = 0) to the pure in-
cident wave (B = =) is clearly seen in this figure. The wave energy distribu-
tion near the barrier has been computed for a few values of 2. An example is
given in Fig. 12 in which the map of VEP/EP, for 2 = 3 is compared with that
of an impervious obstacle(Z = 0). The detailed analysis suggests the following
characteristic ranges of %2 values: (1) 2 = 0/0.1, the obstacle is practically
impervious; (2) 2 = 0.1/5, the wave energy is reduced in the upstream zone,
but very little in the shadow of the barrier, as compared with the impervious
obstacle; (3) & = 5/100,the wave energy in front of the barrier is further re-
duced, while in the downstream region the waves become higher than those
prevailing behind an impervious barrier;and (4) 2 > 100, the influence of the
obstacle becomes negligible. Allthese effects may be explained by the energy
losses occuring in a pervious breakwater, as well as by changes in the inter-
ference pattern.

Concluding, the optimal range of % is that of range (2). For such values the
breakwater operates almost as well as an impervious one in creating a still
zone behind it, but reduces the energy of the waves in front of it. Attention
has tobe paidto the fact that # incorporates the breakwater properties as well
as the wave frequency.

EXTENSION TO RANDOM SEA

The random incident waves are assumed to obey the stochastic model pro-
posed by Pierson (7):

A B
nl(x,,%) _ f fﬁ sin F{B - w(\)t o+ e()\,B):] VAZ(X,B)drdB (28)

Mo A
1

in which A%(A, 8) = the energy spectrum. The random phase shift €(x, 8) has
a rectangular distribution in the range (- 7, 7) and the model represents a
multivariate Gaussian process stationary in three variables x, y, £. It may be
shown that in the presence of the obstacle

A B
n(x;y)t) - f 2 fﬁz {Sin <2{]£ - wt + €>
1

Mo A
1
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+ &) sin [arg (&) - ot + €)] VAZ(X,B)drdB } ............. (29)

in which &(x,y,A,8) is given by Eq. 17b. Similarly, the dimensionless aver-
age potential energy is given by

. 1 A B
EP (7, 0) =Tizsampe =f2f251+2|§|cos|:arg(§)
EPO %'r]% >\1 Bl 1
3 .2.;_2] +|£!2}A2(A,B> drdp e B9
A B
2 "2 {EP (1,0,0,8) | ,»

in which EP, = energy of an arbitrary monochromatic wave. Eq. 30 shows
that the average energy at apointis obtained by integrating the energies of the
spectrum components. Eq. 30 as well as the fact that the sea stdte is repre-
sented by a multivariate Gaussian process stationary in £, in the presence of
the obstacle, are proved in Ref. 8.

As an example, energy EP/EP, hasbeen computed in the case of an imper-
vious barrier at point A(r = 0.17, 0 = 0.57) in Fig. 13, for a band of 0.3
< A/l < 0.5. The undulating nature of the curve of Fig. 13 clearly indicates
the interference effects of the obstacle edges. .

In addition the wave average energy at the same point, (EP/EP,) has been
computed by integrating Eq. 30 with a constant spectrum A2(A, 8) in the band
0.3 < X/l < 0.5and for B = 90°, as it is appropriate near the coast. Taking
EP, as the total energy contained in the spectrum of the incident waves, EP/
EP, (Eq. 30) was found to be equal to 0.170. Assuming a monochromatic de-
terministic incident wave with A/l = 0.4 (the average wavelength in the con-

[+— The integrated average
energy for a step energy
spectrum of the incident

—  wave.

[Fa=0.52 A=0.3 -
PYS, S N N IR S T R
24 26 28

El
0 72 3 T T 20 22 3

= (122
=D

FIG. 13.—DISTRIBUTION OF WAVE ENERGY EP/EP, BEHIND THIN BARRIER AS
FUNCTION OF WAVE LENGTH AT POINT A(r = 0.1m, 6 = 0.57)
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sidered band) and with the same total energy EP,, the value of EP/EP, (Eq.
20) = 0.185. Thus, in the particular case considered herein the replacement
of the random incident wave with a narrow wavelength band by a monochro-
matic wave results in a small error.

CONCLUSIONS

By using elliptical coordinates, an efficient method of computing the wave
energy distribution near a thin detached breakwater has been set forth. The
detailed maps of the sea state near the obstacle provide the necessary data
for the evaluation of the breakwater performance at different wave length and
angles of attack.

The qualitative analysis of the influence of the permeability of the break-
water body indicates the optimal range of the permeability values for given
waves. The analysis is of alittle quantitative value because of the nonlinearity
of the resistance of the breakwater body which prevails in most applications.
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APPENDIX II.~NOTATION

The following symbols are used in this paper:

AZ%(X,B) = energy spectrum;
a = constant related to wave’s amplitude;
B, B, = width of breakwater;
byuns O3 n = coefficients;
ce,, (6,9), Ce,, (r,q) = Mathieu function, see Ref. 3;
EP = potential wave energy;
EP = average potential wave energy;
EP, = potential energy of incident wave;
Fek,, (r,q), GeK,, (¥,q) = Mathieu functions, see Ref. 3;
f»(z) = eigenfunctions in z direction;
GC = global scattering coefficient;
h = water depth;
K,K, = hydraulic conductivity coefficient in Darcy’s law;
%2 = dimensionless coefficient, see Eq. 27;
k, = wave number of incident wave;
! = breakwater’s length;
- m,n = integers;
Pm (@), b}y, (@) = constants, see Ref. 3;
q,, - 4, = eigenvalues in z direction;
v = elliptical coordinate;
g) = constants, see Ref. 3;
sey, (8,9), Se,, (r,q) = Mathieu functions, see Ref. 3;
! = time;
V = velocity;
x,9,2 = Cartesian coordinates;
B = incident wave angle of attack;
€ = random phase shift;
n = water surface elevation;
nf = idem for incident wave;
n, = incident wave’s amplitude;

§ = elliptical coordinate; -
A = wave length;
¢ = see Eq. 17b;
p = see Eq, 5;
o = see Eq. 4;
¢, ® = potential function;

¢! = potential of incident wave;
¢S = potential of scattered wave; and
w = wave frequency.



