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Energy losses due to vortex shedding from the lower edge
of a vertical plate attacked by surface waves
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The ratio between the flux of the energy taken out by the vortex
generation process e, and the incoming wave energy flux e, is shown

to be given by
ey/ew = 208 /{u[ K3 () + 7213 () I},

where o = vr, and x = vT are non-dimensional parameters and K, I, are
modified Bessel functions. The parameters r, and v are the amplitude and
wavenumber of the incoming wave, respectively, and T is the draught
of the plate. This theoretically derived formula is in good agreement with
experimental evidence.

1. INTRODUCTION

The problem of surface waves diffracting from a vertical plate (see figure 1) was
solved analytically by Haskind (1959). For the sake of simplicity we confine the
discussion herein to a rigidly held plate and to infinitely deep water. The first
published solution for the rigidly held plate was given by Ursell (1947), with the
main results expressed in terms of the transmission and reflection coefficients.
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Ficure 1. Definition sketch for waves approaching a vertical plate.

The transmission coefficient C, (defined as the transmitted wave to incident wave
amplitude ratio), and the reflection coefficient C. (defined as the reflected wave to
incident wave amplitude ratio), are given by

K, () nd, ()
C, = -, O, = > 1 11a,b
bR () + K2 ()T (2L} (u) + K3 ()] (1-1a,)
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K, and I, are modified Bessel functions; x = v7', where v is the wavenumber and
T the draught of the plate. The theoretical results together with our experimental
data are plotted in figure 2. One significant difference between the non-dissipative
theoretical model and the experiments is the fact that

0, theoretical result
e,/ ey, experimental result) ’

1—(0§+C’f)={ (1.2)
where e, is the total power loss between the upstream and the downstream
measuring stations, and ey is the incident wave energy flux (power). The relative

energy loss ¢,/e,, is shown at the bottom of figure 2 and it appears to vary between
5% and 189,.
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Fiaurk 2. Reflection and transmission coefficients for a rigidly held vertical plate. Full symbols
are for transmission; hollow symbols are for reflection; the crosses are for energy dissipation.

It is a well known fact that sharp edges, like the one at the origin (0, 0), cause
boundary layer separation and tend to shed vortices (see figure 7 in Knott &
Mackley (1980)). These vortices are shed in pairs, one pair per wave period, and
move downward and away from the edge. The assumption that only one pair of
vortices is shed during one wave period is verified in the Appendix. The kinetic
energy of the vortices, which is eventually converted into heat by viscous
dissipation, is one reason for e, # 0. For experiments made in relatively narrow
wave flumes e = e +e, (1.3)

where e, is a result of the vortex formation and e, is a result of the viscous friction
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near the side walls. The objective of the present paper is to provide a quantitative
assessment to the amount of energy that is transferred from the waves to the
vortices.

2. THEORY
Vortex coordinates and circulation

To simplify the analysis we confine our interest to a single vortex only, thus
neglecting the influence of the previously shed vortices.

Following Haskind (1959), one can show that the wave field velocity near the
origin is given by

W, = U,—iV,, = y(t)/2+ 0(2°), (2.1)

_ oro[K () cos (at+e€)+mnl (1) sin (ot +¢€)]
[K3(p) + 213 (p)] (20} '

where v(t) (2.2)

/
Here, ¢ is the time, 7, is the incoming wave amplitude, ¢ is the phase shift and
o = (gv)} is the frequency. The square-root singularity at the edge of the plate is
unacceptable on physical grounds and one should try to eliminate it. Using a
method similar to the one used to solve the lifting problem in 5.7 of Newman
(1977), one can show that the complex velocity field of a vortex (with centre at
%y, Yy) In the presence of a semi-infinite plate (located on the positive real axis)

is given by
- 1
T - ]— (2.3)

W—E 1 + i [1—
2mz,—z  2m(2t—()*) (A—2b) (2 —(2d)%) 2

v

where i is the imaginary unit and the asterisk denotes the complex conjugate. Note
that W, too, has a square-root singularity at the origin z = 0. To eliminate the
singularity we apply the so-called Kutta condition, namely lim, (W, + W,) = O(1),
which yields

i +a,/lz,)

t)+
YOT e — )

=0. (2.4)

It is well known that the location of the centre of a mature vortex (i.e. one with
fixed circulation) is governed by the equation

def/dt = lim [W—il"/2n(z, —2)],

Z—>2v

where W (in our case W = W, + W,) is the overall complex velocity.
For a vortex in process of generation, a condition equivalent to the above zero
force condition is required to complete the specification of the vortex and its path.
Since this point vortex represents a growing spiral vortex sheet attached to the
edge of the plate, the point z, must be joined to the origin by a cut representing
the sheet. This point vortex plus cut is the simplified model first suggested by
Brown & Michael (1955) to represent the spiral vortex above the leading edge of
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a slender wing. A suitable condition can be derived by considering the condition
of zero total force on the vortex plus the cut,

4% = lim {F[W— i }} = Ty iy . (2.5)
de 22y 2n(zy—2)l)  dmz (d—(2)*)? 2m|z,|d (4 — (4)%)
Equation (2.5) is the time dependent analogue of the equation used by Brown &
Michael (see, also, Graham 1977).

Equation (2.4), which is real, together with (2.5), which is complex, constitute
a set of three real equations for the three real unknowns, I', z, and y,. The solution
of this set for the initial conditions x, =y, =I'=0at ¢t =0, is

I = —24/2my (2\/12 ft vt dt)é, (2.6a)
1 ¢ 3

/ Yy = (Mfo v? dt) , (2.6b)
xz, =0, (2.6¢)
If one chooses € in (2.2) so that V,, > 0 for ¢ in (0, to~1), then y can be rewritten
a8 y(t) = oCsinot, where C = r /[2uv(K2+T22)]: (2.7)

With this notation (2.6a) and (2.6b) become
I' = —2noC3sind (at) [lot —1sin (207) ], (2.8a)

i §

Yv = {2\/2 s?n (1) [%t"sm fgt)]} ' (2.80)

The function I(t) has one maximum, denoted by I, in the interval (0, tc~?!) and
we assume it is not much different from the circulation at the mature state.

One can show that this maximum occurs at ¢ = ¢, where ot = 1.94 and that
I, and y,, = y,(¢,,) are given by

I, /r2=—38.95[(vr,) p(K:+n2I2)] 75, (2.9a)
Ym/To = 0.45 [(vro) w(K3+m213)] 75, (2.9b)

Energy estimate

It is only fair to warn the reader that the estimation of the vortex energy seems
to be the most difficult, as well as shaky, part of the theoretical approach. In the
present section we rely more often on intuition (whatever this stands for!) than
on sound theory. To be more specific, the imposed assumptions are

(i) the irrotational vortex is replaced by a viscous core vortex;

(ii) while calculating the energy of the vortex, its interactions with the wave
field, as well as with the plate, are ignored;

(iii) the range of integration is limited to |z —z | < y,,.

The circumferential velocity of a viscous core line vortex is

v=Tp(1—e /%) 2mr, (2.10)

where r = |z—z,|, V'is the kinematic viscosity and 7 is time (see Rott 1958).
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To assign a plausible value for 7 we require that the circumferential velocity at
r =y, (1.e. at a distance equal to that between the vortex centre and the edge of
the plate, at t,) as given by the above viscous core vortex, should be identical to
the circumferential velocity of an irrotational vortex given by v = I',/2nr. Since
these velocities cannot be made identical we have chosen to tolerate a relative
difference of 1%, which leads to exp (—y2,/497) = 0.01 and thus to 7 = 2 /16.4/.
It turns out, as we show later, that choosing a relative difference of 0.001, instead
0f 0.01, has only a minor effect on the final result.

The energy flux from the wave field into the vortex motion is approximated by

e, = %p27t f Oym vrdr = 0.54; (wo)ﬂfgﬁﬁ oIk (2.11)

The incoming wave energy flux is
, by = ipgzrﬁ. (2.12)

From (2.11) and (2.12) we obtain
&_p_ P (2.13)

b [METTEE

w

The numerical value obtained for D is 2.16. If we assume exp (—y2,/497) = 0.001,
instead of 0.01, D would be 2.79 instead of 2.16.

3. EXPERIMENTAL VERIFICATION
The model

Tests were made in a 27 m long, 60 cm wide and 1.30 m deep wave channel. The
channel is equipped with a piston-type wave generator, the motion of which is
controlled by an external (electronic) signal. For the present investigation,
sinusoidal signals were used to generate monochromatic waves. An absorbing
beach made of rubberized hair and having a slope of 1:3 was installed at the
downstream end of the channel.

The 1 cm thick plywood plate, which spanned from wall to wall across the
channel, was rigidly fixed at a distance of 14 m from the wave generator to the
channel concrete walls. The gaps between the plate and the walls were sealed. Tests
were made at various plate draughts from 10 to 25 cm at water depths from 62.5
to 77.5 cm.

Waves were measured with resistance-type gauges. The data were accumulated
by a computer and directly analysed by using a method similar to that of Knott
& Flower (1979). In this method, a pair of wave gauges on each side of the plate
is sufficient to estimate the amplitudes of incident, reflected, transmitted and
beach-reflected waves. To reduce uncertainties due to measurement errors, four
gauges were used on each side and the results that were obtained from various
combinations of wave gauge pairs were averaged. The gauges in the group were
placed at unequal spacingsin an approximately 1 m long section along the channel.
Since measurement errors may be augmented when the distance between two wave
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gauges is close to an integer multiple of half the wavelength, the wave gauge pairs
having near-critical distances were discarded from the computations, thus reducing
the possibility of substantial measurement errors.

The distances from the centres of the wave gauge groups to the plate were
approximately 2 m. Various wavelengths were employed with maximum values
limited by approximately twice the water depth, to keep the waves in the deep
water régime.

Results
Preliminary analysis of raw data

As a first approximation it was assumed that e, < e, (see equation (1.3)), i.e.

e1/ew X ey/ey,. Then from (1.2) and (2.13) one obtains
o\ ron Do
O ) = K R e

whére a = vry. Equation (3.1) describes a family of curves for various values of
@ in the (e,/ey)—u plane. The graphical presentation is reduced to a single curve
by showing (e, /e, )/} as a function of 4. The results are shown in figure 3, where
the theoretical curve was calculated assuming a value of 2.16 for D.

From figure 3 it seems that the theory has the same trend as the experimental
results, but otherwise the data points are widely scattered and the agreement is
rather poor. The trend of results indicates the correctness, in principle, of the
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Fieure 3. Energy dissipation for a rigidly held plate.
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theoretical considerations. The large data scatter and the fact that these data are
higher than the theoretical values may be explained by the following points.

(i) The higher experimental values are possibly due to a value for D that is too
low. A higher value would bring the theoretical curve closer to the experimental
results, but at u > 1.0 the experimental values would still be much higher than
the theory.

(ii) Theexperimental scatter is possibly due to measurement errors. A reasonable
error in the measurement of C and C; becomes increasingly large compared to the
very small quantity 1 —(C24C%).

(iii) Energy losses other than by vortex formation are possibly responsible for
both the higher experimental results and the apparently large scatter of data. These

losses (i.e. ;) were neglected in the above analysis. Including them in the analysis
yields . Db
1—(C2+ 03 —-L = ; 3.2
e ), ™ Tl + T &2

cf. (1.2), (1.3) and (2.13).
The effects of frictional losses were employed as described later.

Application of wave attenuation

Consider the experimental arrangement shown schematically in figure 4. The
distance between the two measurement stations is d and the plate is placed at
exactly the midpoint between them. Waves at the measurement stations and near
the plate are denoted by subsecripts 0 and 1, respectively.
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F1cure 4. Definition sketeh for correction of results due to attenuation of waves.

The amplitudes a;,, a,, and a,; cannot be measured experimentally since the
wave motion in the vicinity of the plate is complicated by local phenomena.
They are assumed to be given by

Uiy = i €q72(3), (3.3a)
Ay = Qyo/€q2(ay), (3.3b)
Opy = po/€q2(ay), (3.3¢)

where €4,(a) is the attenuation coefficient for a wave of amplitude a travelling a
distance id.
The measured coefficients of transmission and reflection are defined by

Cy = g/, (3.4a)
Cr = ag/ a4, v (3.4b)
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and the corrected coefficients by

CF = a,, /0y, (3.5a)
CF = ay/ay. (3.5b)
Substitution of (3.3) in (3.4) and with use of (3.5) yields
Cy = €q2(a4) €475(a) CF, (3.6a)
Oy = €q75(a) €qpalay) CF- (3.6b)

The attenuation of wave amplitude along the channel was measured for the two
following cases: (i) waves propagating freely in an obstacle-free channel; (ii) waves
reflected from a vertical rigid wall that blocks the channel completely.

For the first case, the wave is measured at two stations (consisting of four wave
gauges each) located at a distance of 4.2 m from each other. In the second, the
distance from the measurement station to the wall was 2.1 m so that the distance
the wave travelled from the station to the wall and back was also 4.2 m.

The results showing the coefficient of energy attenuation €3, as a function of
the wave number, v, for waves of various amplitudes travelling a distance
d = 4.2 m are presented in figure 5. Also shown in this figure is the theoretical curve
for infinitesimal waves (a = 0), as developed by Hunt (1952).

If we assume that the attenuation of wave amplitude along a distance z is
given by

a, = a,e f* (3.7)

where f§ is a (constant) damping coefficient, then the relation between the
attenuation coefficients for waves travelling distances d and 3d is

€as = €. (3.8)

From (3.8) and (3.6) the final result
OF = Cy/leq(as) eqlay) B, (3.9a)
OF = Cy/leqlay) €glar) Tt (3.90)

is obtained. The corrected coefficients, Cff, and C¥ can now be estimated directly,
since the right-hand side (3.9) consists of known quantities, which were measured
experimentally. The results are shown in figure 6. Compared to figure 2, it can be
seen that the experimental results are now a little closer to the theoretical curves.
It is interesting that the corrected experimental results display systematic
deviation from the theoretical results only for the transmission coefficient, while
for reflection the experimental data agree well with the theory. This indicates that
energy dissipation is involved only in the transmission mechanism, and not in the
reflection (such an observation was also made by Knott & Mackley (1980)).
After correcting the results for energy dissipation, the energy balance can now

be written in the form
ey/ey = 1—(C¥2+Cf?) (3.10)
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Fioure 5. Viscous dissipation of waves in a 60 cm wide channel. & = 0.725 m;d=42m;
(a) obstacle-free channel; (b) totally reflected waves.

and, by substituting (3.9),

e 1 C? C?
=1 t I ] . 3.11
€w €q(@) [ed(at) * eqlay) ( )

The theoretical value (equation (2.13)) is now compared in figure 7 to the corrected
value (equation (3.11)), which represents the experimental measurements.

The scatter of data in figure 7 is most certainly due to measurement errors, but
the improvement over the original, uncorrected results (figure 3) is impressive. The
agreement between the theory and experiments supports the theoretical approach.
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FicurE 6. Reflection and transmission coefficients for a rigidly held plate, corrected for viscous
dissipation. Full symbols are for transmission ; hollow symbols are for reflection; the crosses

are for energy dissipation.
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Ficure 7. Energy dissipation for a rigidly held plate, corrected for viscous dissipation.
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APPENDIX

Throughout the analysis, we have assumed that only one pair of vortices is shed
per wave period. In the following, we bring some reasonings to show that it is indeed
so for any possible a provided # > 0.2. When 4 < 0.2, « is limited by the condition
a < 2u.

Fage & Johansen (1927) have shown that the frequency with which the
individual vortices leave each edge of a flat plate of breadth 2a in a perpendicular
stream of undisturbed velocity U is given by

f=0.146U/2a. (A1)

To apply this result to our problem and to replace U and a by their appropriate
equivalents, we introduce two assumptions:
(i) the undisturbed velocities at the edges have to be the same for both

problems:
U=or,e™#; (A 2)

(i) the singularities at the edges ought to have the same strength,
Ua/2% = ¢C = or,/[2uv(K2+n212)}. (A 3)
By eliminating U and @ from (A 2) and (A 3), and by substituting them into (A 1),

f=10.073au(K:+n2I%) e ] 0. (A 4)
To obtain only one pair of vortices per wave period, we need
f<o/2n, ' (A 5)
which together with (A 4) gives
0.5aue (K +m2l%) < 1. (A 6)

Since the wave steepness « is limited by the condition & < 0.4, one can show that
the inequality (A 6) is satisfied as long as u > 0.2. For smaller u, using series
expansion of the Bessel function, we obtain

0.50/p < 1. (A7)
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