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It is shown that Zakharov’s integral equation yields the modified Schrodinger equation for the particular case of a narrow
spectrum.

Recent studies of nonlinear dynamics of deep water gravity waves indicate that the cubic Schrodinger
equation seems inadequate even for describing the evolution of weakly nonlinear waves, see Yuen and
Lake [51.

Two more accurate descriptions have been proposed, so-far. Dysthe [3] took the perturbation analysis
originally used for the derivation of the cubic Schrédinger equation one step further, to fourth order in

- the wave steepness, and derived the so-called Modified Schrédinger equation. Crawford et al. [1] proposed
an integral equation, first derived by Zakharov [6]. This integral equation, which they called the Zakharov
equation, was obtained by an expansion to third order in the same wave steepness but in the Fourier space.

The present author believes that the scope of applications of Zakharov’s eq. is much wider than that
of the Modified Schrodinger eq. and is still far from being exhausted. The limited goal of this note is to
show that"the Modified Schrodinger eq. is merely a particular-case of the much more general Zakharov
eq. In order to achieve this goal, the derivation of the Modified Schrédinger eq. from Zakharov’s eq. is
outlined in the sequel. This derivation follows the lines of Zakharov [6], used in his derivation of the
cubic Schrodinger equation. Zakharov’s eq.
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is related to the free surface n(x, ) by the expression
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* denotes the complex conjugate, k = (k, [) is the wave vector, x = (x, y) is the horizontal spatial vector,
and w is the linearized wave frequency related to k through the linear dispersion relation w(k) = (gik[)*/?
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with g the acceleration of gravity. T(k, ki, k, k;) is a rather lengthy reai scalar function, given in the
appendix of Crawford et al. [2]. In order to obtain the Modified Schrodinger eq., the discussion is restricted
to narrow spectra, with energy concentrated around k = ko= ko, 0), and all wave-numbers are rewritten
as

k:ko"‘% X=(X’A)’ JXf/kO=O(1)
A new variable A(y, t) = B{k, t) exp{—i[w(k) — w(k,)]t} is introduced in eqs. (1) and (2)
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The last equation is rewritten as follows
1(x, 1) =Refa(, 1) e ooy, | (5)

where a(x, 1), is given by the following Fourier transform

1/2 '}
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Note, that the Modified Schrodinger eq. is usually expressed in terms of the complex amplitude a(x, 1).
The frequency difference w(k)—w(k,) on the Lh.s. of eq. (3) is replaced by the Taylor expansion in
powers of the spectral width
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Then, eq. (3) is multiplied by (2w (ko)/g)"/*(1 + x/4k,) and its inverse Fourier transform is taken, which
yields
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Next, one can show that the Taylor expansion of T, to first order in the spectral width yields
T(kot x2+ x3—x1, ko+ X1, ko+ X2, Ko+ x3)
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Substituting eq. (9) into the r.h.s. of eq. (8) and integrating it, gives
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Using the convolution theorem and the eighth eq. on page 470 of Jones [4] one can show that

g OOM 2
(2w(ko))2“J o)y =te (12)

To complete the exposition we introduce the induced mean flow potential @(x, y, z, t) which has to
satisfy Neumann’s problem in the lower half space with &,,(z=0)=w(k)/2(3/5x)(|al*), z being the
vertical coordinate. For this potential one can show that

w(ko) jm i
il B eIy
Thus from egs. (12) and (13) one can show that eq. {10} becomes, finally:
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which is the conventional form of the Modified Schrodinger eq. The fact that the fourth order (in the
-wave steepness) Modified Schrédinger eq. is a particular case of the third order Zakharov eq. is less
surprising if one realizes that all the fourth order terms emerge as a result of the narrow spectral width
assumption, and none of them is of fourth order in the wave amplitude itself.
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