Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/83/004534-11 § 3.70/0
Vol. 34, July 1983 © Birkhduser Verlag Basel, 1983

Derivation of the nonlinear Schrodinger Equation
for shoaling wave-groups

By Michael Stiassnie, Ralph M. Parsons Laboratory, Massachusetts Institute
of Technology Cambridge, MA 02139 USA*

1. Introduction

The aim of the present note is to provide a simple mathematical model for
shoaling of nonlinear wave-groups, namely: modulated wave trains and wave
packets. As an introduction we recall some well-known results obtained by
linear wave theory.

The free-surface elevation n for a shoaling linear water-wave field is given
by:

nGet) = | Glhg,0)-expi{ ] k(ho,®)dx — wt} do (L.1)
4] Xoo

where x — is the horizontal coordinate, and ¢ — the time. The wavenumber
function k and amplitude spectrum & are given by:

kth(khy) = w?lg; d=d,,-[thikhy)-(1 + 2khe/sh2kho)]™ Y2,

and depend on the water depth h,(x) and the wave frequency w. Only real and '
positive values of k are considered and 4, is the infinite-depth complex ampli-
tude spectrum at the reference point x.

The term “wave-groups” means that we have wave-fields with narrow spec-
tra in mind. Thus, first, we choose a frequency w, in the domain [w,, wy]
assuming that (wy — ®,)/®w, = 0(1). Second, we substitute in Eq. (1.1) the ex-
pressions:

o =awy(l +¢y), where ¢=o0(1) and y1=u=0(1),
’ &

Dy

— @
VN=TO=0(1)'

k(hy, w) = ko (ho) ‘ye+ R(ho,78)-(ye),

4 Do
(B¢ /Oko)
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where k, th(kq hy) = w?/g; to obtain:

n(x, ) =expi{ | kodx — w,t}
N < x
{ d(ho,y)-expi{woyt + (ye)* | Rdx}dy (1.2)
7 X
where :
x dx
T=¢ — —t]. (1.3a)
(aio (8w /0ko) > ‘
Third, we assume a rather mild depth variation, so that hy = h, (£), where
E=¢%x. (1.3b)

Finally, eq. (1.2) yield_s
/ x . YN ~ N
n=expi{ | kodx —wot}- [ A(y)e®rdy (1.4)
X Y1

where A(¢,7) = d(ho, ) expi(y* [R(£)d).

The importance of the above results lies in the rather natural way by which the
scaled variables 7 and &, see eq.(1.3), are introduced.

In what follows we will, when necessary, distinguish between two types of
boundary conditions at x.,. The first type, for which the amplitude-spectrum
d. is a function of w in the ordinary sense of the word, corresponds to wave-
packets which tend to zero as |t| — c0. The second type has its amplitude-

N
spectrum given by a finite sum of Dirac delta functions (@, = 2. a,_0(y — 7,),
n=1 -

where 7y, are rational numbers) and corresponds to modulated wave-trains
periodic in 7.

In order to discuss the shoaling problem for nonlinear wave groups, (and
thus allow for weakly nonlinear interactions among the various components),
we turn in the next section to Whitham’s modulation equations.

2. Modulation equations

Considering the 2-D problem of wave-groups propagating over water of
slowly varying depth h,, the following five unknowns are usually chosen as
dependent variables: the wave amplitude a, the wave frequency w, the wave
number k, the average water depth h, and the current velocity U. To determine
these unknowns we start from Whitham’s set of modulation equations Whitham
(1974), p. 556. Pseudo-phase consistency relation:

U  ® gk

T a0kt T ey

o+ a* + O(Sf)] =0. (2.12)
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Mass conservation equation:

o(h — 0) gk N
5 axI:h°U+2—a +0(E%)|=0. (2.1b)

Wave-action conservation equation:

0[a? " 0

at[ +O0(e )J+5~[a—+0(3 )} (2.1¢)
Consistency condition:

0k Ow

Z 2 =0 .

” + ™ (2.14d)

where, o = [gkth(khy)]'/? is the linear dispersion relation, ¢’ = do/0k, and ¢ is
a typical wave steepness, ¢ = O(ak).

Following Whitham (1974, p. 562) and including higher order dispersive
terms which arise from the quadratic part of the Lagrangian G = w — ¢ (see
Whitham p. 526), the dispersion relation is given by:

gk? gk®*D ¢’ 0%a
LT 2_
Sochikhg BT T e

w=0+kU+ +0@EY (21¢)

where D = (9t h* (k hy) — 10t h2 (k ho) + 9)/8 t h* (k hy).

Here, and in what follows, we assume that the small modulation parameter,
which is introduced via the boundary condition at x, (see ¢ in the previous
section), is of the same order of magnitude as the typical wave steepness. We
allow for arbitrary total depth changes, but require mild bottom slopes, of the
order of &? at most.

3. Induced mean flow

To make the variation explicit and to facilitate the derivation we introduce
the same multiple scale variables, T and &, as used by Djordjevic’ and Redekopp
(1978), see also eqgs. (1.3),

—-al:i-g;—zca—t} E=¢2x. (3.1a,b)

Where o is an averaged group velocity, to be defined in the sequel.
Rewriting eqgs. (2.1¢) and (2.1d) with the new coordinates (egs. 3.1), and
averaging them over 1 gives:

'

= const, = B; @ = const, = Q. (3.2a,b)
¢ ,
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Here we assume that the behavior of the solution as a function of 7 is the same
as that of the linear boundary condition at x. Namely, decaying for |t| — o0
in the case of wave-packets and with a constant period in the case of modulated
wave-trains.

The bars indicate averaging over the appropriate domain in 7 (finite for
modulated wave-trains and infinite for wave packets) and B,  are the averaged
wave-action flux and the so-called carrier frequency, respectively. Note that for
wave-packets B = 0. We also define K, the carrier wave-number:

Kth(Khy) = Q%g. (3.3)
Rewriting egs. (2.1a) and (2.1b) with the new independent variables, yields:

0 (1 gk 2
3o LRt B

/

0 gka? _

~~ Yo h a 2 - h - h —~ h U — 2 == . R
61{9’[°U+20a:| ( 0)}+855{0 +2661} 0 (3.4b)
Neglecting, for the time being, the second terms in the above equations, we
obtain:
gkho gk a ho Gy + Q'G,
h - h = - Ql .5
0 (25”1 (2 kho) 20 g hO — (Q’)Z + g hO _ (Q/)Z H (3 a')

2 Y] 2 ’
gk gkQ a gG, + ' G,
Y o 3.5b
v (20 +2sh(2kho)>gho—(§2’)2+ e —@p Y

where, G, and G, are functions of £, which emerged as a result of the integration.
Now, averaging egs. (3.4) and substituting (3.5) yields:

gk g gKho 9K\
25sh(2Khy) ghy— (P \2sh(2Khy)  2Q

hoG, + 2 G,
+gQ ———== = consta,, 3.6a
I gy @y o
oK hy (K gKQ '?
20 ghy— (@72 \2Q T 25h2Khy)

9G, + 2'G,
+ hyQ —=——— = const 3.6b
g @y o L0

where, consistent with the order of approximation k and ¢ have been replaced
by K, Q.
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Following Stiassnie and Peregrine (1980) we assume zero averaged mass
flow (thus, const, = 0) and choose such a reference level that & — hy = 0 in deep
water (which, in turn, sets const; = 0). Having fixed these tow constants we solve
egs. (3.6) for G, and G, and then return to egs. (3.5) to obtain the final results
for the induced mean flow:

g°K gKQ a — a* gKa?

U = . — , 3.7
@) <2£2 Y Sh@Khy)) ghe— @7 20k, (37
Kh K@\ a*—a? Ka> (38

h,8) —ho (@) = (st + 2 ). - ‘

2sh(2K hy) 2Q ghy — () 2sh(2Khy)

Consistent with our level of approximation we have
a2 = Q B={-2 & for modulated wave-trains
(03 2QQ " ’ (3.9)
0, for wave-packets.

A simple example, showing the calculations of E and Q, is given in ap-
pendix A.

4. Nonlinear Schrodinger equation

To derive the NLS we rewrite eq. (2.1¢) as follows

2a8a o' a’?dk 2¢'ada o a’0dc azﬁa’_

0. 4.1)

o Ot o E+ g 0x o2 6X+F6x_

Applying eq.(2.1d), which gives mutual cancellation of the second and fourth
terms in the above equation, and dividing by 2 a/o yields

Oa ,0a add
The Taylor series expansion of g (k) in the vicinity of k = K is
c=0+Q (k- K)+ > -k — K)* + o(e?). 4.3)
Using this series we rewrite eq. (4.2) as well as the dispersion relation (2.1¢):
da Oa 0a Q"adk—K) adQ
e Q/ il Q// . _ bl e Shatetd - —_ .
a T T kR T e T (442)
Q" Q" d%a —

w=Q+Q'-(k—K)+7-(k—K)2+oc1a2——;——+oc2a2. (4.4b)
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Here
_gK> 9th*(Khy) — 10th®(K ho) + 9
“=50 8¢h®(K hy)
B g2K+ gKQ K
2Q " 2sh(2Khy)) ghy — ()

gKhg gk gK? 4.52)
25h(2K h,) 2Q ) 2Q[ghy — (Q)]1ch®>(Khy)’ ’
= 3 g k2 B gK3
2T 20k, 4Qsh(QKhy)ch?(Khy)
3 4 —10th?(Kh 9
+gK 9th* (Kho) i (K hy) + (45b)
) 2Q 8th’ (K hy).
Referring to eq. (2.1 d) we define a phase function 8 so that
oo o0 ‘
—Q=—— —K=—. 4.
o-Q=-5 k-K=7 (4.6)
Substituting eq. (4.6) into egs.(4.4a) and (4.4b) we obtain
Oa da Q" [ %0 06 da a o
— 4+ Q —+—laz e —— = 4.7
6t+ 2 <a6x2+ axax>+26x 9, (4.72)
00 06 Q” 06 19%a
, ol =0. .
% + Q' — ax - <<6x> e )—i—lea +oc2a (4.7b)

Multiplying eq. (4.7 a) by the imaginary unit i, adding to it (— a) times eq. (4.7 b)
and then multiplying the sum by e we get

o Q" —

2<6 )A—H(A,,—}-Q’A o+ —Z—A,xx—ocllAle=oc2a2A (4.8)
where 4 = ae® is a complex wave envelope. Alternatively, using the scaled
coordinates (3.1a, b) we have

i 6!2’ Q" T P
55 3¢ A+id,+ s |APPA=—"—¢"2a%4. 4.9)

2( )3 Q Q

The last equation is almost the same as that obtained by Djordjevic’ and
Redekopp (1978) (Note that their 4 is g/2 Q¢ times the one in eq.4.9). In
principle, after solving eq. (4.9) one can go back to egs. (3.7) and (3.8) and obtain
the induced mean current velocity U(r, &) and the mean free surface
h(t,&) — hy (&) right away. These induced mean flow quantities are of great
practical interest, since they are probably related to such phenomena as surf
beats, long shore cellular structure, and harbor resonance.
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5. Comparison with Djordjevic’ and Redekopp

Djordjevic’ and Redekopp used a multiple scale method and started their
derivation from the Laplace equation for the velocity potential and the non-
linear free-surface boundary condition. Their approach is basicly the same as the
one used by Davey and Stewartson (1974) for water of constant depth. Equation
(4.9) has a known function of £ on its r.h.s. whereas previous authors did not
attempt to determine this term explicitly (except for wave-packets, for which it
is identically zero). The way in which eq. (4.9) enables to obtain the well-known
monochromatic wave-train solution is shown in appendix B.

In order to obtain eq. (4.9) from Djordjevic’ and Redekopp’s results we start
from their egs. (2.11) and (2.12) given, in our notation, by:

i oQ Q —2/31 2
Taae ATt (Q,)3A,ﬂ— |A? A
f;, 10,4 + Eﬂ AGK! (5.1)
2 .,2 2
g° B2 14|
e = — + Q(¢ (5.2)
P10 = 300 —ghy@y] T ¢Y
where
g - gK39- 12th2(Kh0)+13th4(Kh0)——2th6(Kho) 53a)
Yo 8th3(K hy) -
K2 /2Q ,
B, ”ﬁ(K o +sech (Kho)), (5.3.b)
K2
Bs= 35 sech? (K hy). (5.3.0)

Note that the last term on the r.hus. of eq. (5.1) does not appear in Djordjevic’
and Redekopp. In the sequel, we will show the necessity of including the term
e>@(£)-t in the wave-induced mean current velocity potential., ¢,, which is,
thereupon, given by:

Po=8010(1, &) + &2 ()t + e 9y0(7, &) + O (6. (5.4)
To second order in ¢, the wave induced mean current velocity is given by

2 A 2 82

ChIAP 20 -
2QQ1 — g ho/(Q)]
To find Q, we impose a lateral boundary condition of zero averaged (over 7) mass
flow, which is appropriate for an impervious beach, as follows:

U=¢@o,.=

gK —
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From egs. (5.6) and (5.5) we obtain

L JgKQ 9> B,
= — . i
Q)= {29110 * 200 - gho@V] >0
Substituting eq. (5.7) into eq. (5.5) we recover eq. (3.7).
Integration of eq. (5.2) with respect to 7 yields
-2 42
e 0P igpdet 0@+ eP©). (58)

P10 = 200 — gho/(@)]

The first and second terms in the above equation grow monotonically, and
boundlessly with time. Secular terms of this nature are bound to cause troubles
in higher order derivation and should be suppressed. The addition of the term
g2 @ (&)t to eq. (5.4) seems to be the proper way to achieve this goal. Substituting
eq. (5.8) into (5.4) gives:

gzﬁz {}C'AIZIdx—j(lA|2—F)dt—?t}
0 Q 0

P07 201 — ghol(@)]
2 ) Fdx 2 2 = 2
+¢e°Q ?27_t + & P+ef@t+ e @,. (5.9)
Xo
Thus, suppressing secular terms in ¢ we get:
. £ 2g2B,a* e 2gKQ a?
qD = Va + Q == T xA.L
2011 — ghof(@)] 2Qh,
Following Djordjevic’ and Redekopp’s derivation, but including @, one can
recover eq. (3.8) for the average water surface level. Finally, substitution of eq.

(5.7) for Q, and eq. (5.10) for @, into eq. (5.1), leads to an equation identical to
eq. (4.9). Note that by suppressing secular terms in x one can also show that

(5.10)

P=—{ [ dx/Q'. Anyhow, this seems to be of less importance, since P does not
x0

contribute anything to our third order derivation, in contrast to ¢ which con-
tributes to the lowest order average water surface level.

6. Simple cases

A simpler and dimensionless form of eq. (4.9) is obtained by means of the
transformations

2959! 1/2 ' x
¢=e—1< = > A-expi(az %dx), (6.12)

T=Qr=sg<xd—x—t), (6.1b)
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§ " x 17
X =0 dé = &2 Q? .
Ly =7 Ly (e19
which yield
- Q

i x+ Yo+l Py =0 uX)= (6.2)

The dimensionless parameter u is a monotonic increasing function of K h,,
baving the values zero and one for K i, = 1.363 and K h, — o respectively. The
free surface elevation is given by:

nzsRe{wexpi(?de—-Qt)}. 6.3)

In order to complete the mathematical statement of the “shoaling wave-group”
problem one has to supplement eq. (6.2) with a boundary condition at X =0
(x = x,). We suggest to focus the attention to the following two, relatively
simple, model problems.

(i) Modulated wave-trains

Here, following the approach of Stiassnie & Kroszynski (1982), we consider a
system initially composed of a carrier-wave and a symmetric “side-band” distur-
bance. The water surface elevation of such a system at x = x_, is given by

n(taxoo) — SK;I Re {e-—iQt 4+ ﬁe—i[(1+ys)ﬂt—a] + ﬂe—i[(l—ya)ﬂt—a]}- (64)
The appropriate boundary condition for v is
Y(X =0)=1+2Becos(yT), (6.5)

which is periodic in T with period 27y~ 1.

Applying the results of Appendix A one finds that a2 = (K342 (1 + 2 f?) for
this case. Note also that § = 0 corresponds to the monochromatic wave-train
solution, presented in Appendix B.

(ii) Wave packets

For this case we follow Grimshaw (1979) and take as input a deep water soliton,
which is an exact solution of eq. (6.2) for p = 1. The appropriate boundary
condition becomes:

Y (X =0) = &-sech (5 T//2). (6.6)

Analytical solutions of these two model problems are currently studied and will
be reported in future publications.

This work was supported by the European Research Office, U.S. Army,
under contract no. DAJA37-B2-C-0300.



Vol. 34, 1983 Derivation of the nonlinear Schrddinger equation 543

Appendix A: Calculation of Z and Q.

Referring to the notation of section 1 we consider the following simple
linear-group in infinitely deep water, N =3:y, =—1, 9,=0, y,=1,
G110 = O3, = 4, and a,, = Q. From eq. (1.2) we have

n=expi{kox — wgt}-{ge "R 4 Q + geiwort Ry (A1)

periodic in © with period 2 n/w,.
If we rewrite this equation in the form

n=a,expif{kox — wot+ a,} (A2)
we have
aZ = Q? + 4q* cos*(wy 1) + 49 Q cos R cos(wy 1); (A3a)
/ O _ 2 g sin R cos (wgT)
@ =Wt or 0 e {Q+2qcosRcos(a)01) ( )

Averaging over t yields

@ =0*+2¢% Q=aw,. (A4)

Appendix B: The monochromatic wave-train solution.

For this case 4 = A (&), a? = |A}?, and from eq. (4.9) we have

1 8
s A+ I QA =872 (o + ay)| AP A. (B.1)
2 dé¢
Recalling that A = ae®, the imaginary and real parts of eq. (B.1), respectively,
are

1 o Oa , 00 _

5.8_§a+gl&=0’ —Q—az=(d1+a2)8 2(12 (B2a,b)
where (¢, + «,) is given in eq. (4.5b). The solutions of these egs. are

Q' a®>=const, k=K - (—Oﬁ—g—,—ai) a2, (B3a, b)

as they should be.
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Abstract

A nonlinear Schrédinger equation with varying coefficients, describing the evolution of surface
wave groups moving over an uneven bottom, is derived from Whitham’s modulation equations. The
derivation yields new expressions for the wave-induced mean flow field.

Zusammenfassung

Ausgehend von Whitham’s Modulationsgleichungen wird eine nichtlineare Schrédinger-
Gleichung mit veranderlichen Koeffizienten hergeleitet, welche die Entwicklung von Oberflichen-
wellengruppen beschreibt, die sich iiber einen unebenen Boden fortpflanzen. Die Herleitung ergibt
neue Ausdriicke fiir das wellen-induzierte mittlere Strémungsfeld.
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