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A simple mathematical model, based on the solution of the two-dimensional problem of a
vertical floating plate and on rigid body dynamics, is used to investigate the influence of
different characteristics (such as mass, draft and anchoring) on the breakwater performance.
The results include 1nf0rmat10n about the transmission coefficient as well as about the plate
displacement and anchoring forces, as functions of the plate and incident wave parameters.

INTRODUCTION

Although there exists a great volume of published work
dealing with floating break waters*, it appears that there is
alack of a simple mathematical model for these structures.
Such a model must determine the influence of various
breakwater characteristics (such as mass, draft, mooring
stiffness) on its performance (displacements and anchor
forces) and upon the transmission coefficient (defined as
the transmitted wave to incident wave amplitude ratio).
An approach in this direction was made by Adee et al.!
who adopted a numerical, two-dimensional linear model,
originally developed for ships, which is applicable to
rather general cross-sections.

The floating plate model, proposed in this article, has
the advantage of having a closed mathematical solution.
It permits focusing on the influence of each parameter
separately.

MATHEMATICAL MODEL AND SOLUTION

In order to simplify the problem in a manner that enables

analytical treatment, it is proposed to consider a break-

water with a simple form and to adopt some assumptions
common in naval hydrodynamics. The chosen break-
water model consists of a vertical thin plate, whose upper
edge is above the water surface and the lower one
extending to depth T beneath the surface. The breakwater
mass per unit breadth is m, and the moment of inertia per
unit breadth about the centre of gravity, which is located
at depth ¢ beneath the water surface, i1s /.

The plate may float freely or be anchored at depth b to
cables, which are represented by linear springs having the
constant K per unit breadth. The problem is two-
dimensional (in the plane y, z*, see Fig. 1), the water depth
is assumed to be infinite and its density p constant.
Monochromatic waves with frequency o and amplitude
ro, approach from the left with fronts parallel to the
breakwater. Part of the wave energy is reflected by the
plate and part is transmitted beneath it. The attacking
waves set the breakwater into periodic motion. The
horizontal velocity of the point O (intersection of break-

* For the sake of simplicity the notation in the present article follows
that of Haskind?, as far as possible.
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water with water-surface), which is usually called sway, is
given by Re; [V ], where V=vexp (jot); while the angular
velocity about this point, called roll, is given by Re; [Q], Q
=wexp(jot), where t is the time.

The breakwater motions generate out-going waves,
both up and down stream. Using the assumption of
irrotational flow and considering linear waves, there
exists a velocity potential ®(y, z, t) satisfying the Laplace
equation:

D, ,+0

wyt @, =0, 220 (1)
and the free-surface boundary condition:

®,,—gd,=0, z=0 2)

i g

The free-surface elevation # is given by the expression:
0,  z=0 3)

The boundary condition on the plate (after linearization)
is:
D, =Re[V+Qz], for y=0and 0<z<T (4)

where V, Q are the plate velocities.
The potential of the incoming wave (from y= — c0) is:

©;= Rej[(Po exp (jor)l;

Po=—(igro/0)  exp [ — vz +jy)] )
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Figure 1. Vertical cross-section of the breakwater
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where v=02/g=2n/A is the wave number and 1 the wave
length. The solution of the above stated problem is
obtained as follows: (i) assuming the velocities V, Q are
known the hydrodynamical problem is solved first. This
problem is defined by equation (1) and the boundary
conditions (2) and (4) and the radiation-condition (which
prohibits energy input, except that connected with the
incoming wave (5)). The solution of the hydrodynamical
problem enables one to calculate the forces and moments
of the fluid on the plate; (ii) the unknown velocities ¥, Q are
computed from the equations of motion of a rigid body
(the breakwater), taking into account the various forces
and moments acting on the breakwater; (iii) last, the
transmission coefficient and the force in the spring
(anchor) are obtained.

The hydrodynamical problem has been solved analyti-
cally, using complex-variable techniques, by Haskind®.
According to Haskind’s solution’ the horizontal hy-
drodynamical force Re[Y] and the hydrodynamical
moment, Re,[M], about the point O are given by the
following expressions:

Y= [yg —(opyy + 3200 —

(otzy+Ar4)w]exp (jot) (6)

M= [mg —(opsr T A42)v—

(o tas+ Aas)w] exp (jot) (7

¥4 My, which are the results of the scattering of waves by a
fixed plate are given by:

Vo= =2pgro TS, [l {(u)+jK (W]/

[n*13(m)+ K3(W)] )

my= —2pgro(T?/p) (S, —n/4)- [xl (1) +
JK w1/ Im2 () + K] ©)

K, I, are Bessel functions of the argument u=vTand the
quantity S, =0.5z[1,(u)+ L,(#)]/u depends on the mo-
dified Struve function L,(u)*.

The remaining terms in equations (6) and (7) are
connected with the radiation of waves from an oscillating
plate, in otherwise still water. 4,,, {,, are generalized
damping and added mass coefficients, respectively. The
subscript 2 represents the horizontal oscillation and the
subscript 4 the angular movement. The coefficients 4,
Unm are given in the Appendix.

The equations of motion of the plate are used to
determine the velocities V, Q which remained arbitrary in
Haskind’s work. The horizontal equation (in the y
direction) is:

Y+ jK(V +bQ)/o=m(V +c) (10)

where the term Y, given by (6), represents the hy-
drodynamical forces and the second term on the Lh.s.
results from the forces applied by the spring. The term on
the r.h.s. equals the mass m multiplied by the horizontal
acceleration of the centre of gravity, (the dot above the
velocities notes differentiation with respect to time).
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The equation of the rotational motion about the centre
of gravity is:

(M —=cY)—jK(c—-b)V+bQ)Joc+
jmglc—T/2)Q/o =10 (11)

The first term on the Lh.s. represents the hydrodynamical
moment about the centre of gravity and is given by
equations (6) and (7), while the second and third terms
represent the returning moments of the spring and of the
hydrostatic pressures, respectively. The r.h.s. is obtained
by multiplying the moment of inertia I, by the angular
acceleration about the point C.

The two equations (10).and (11) form a linear complex
algebraic system with two unknowns ¥ and Q.

Mooring forces and transmission coefficients. The ma-
ximum force in the spring is given by the following
formula:

F=K|v+bw|/c (12)
According to Haskind the flow potential for y= oo is:
® = Re;{(—jgro/o +jvB, +jwB, +
JB:yexp [—wz+jy)+jot]} (13)

where the subscript 7 denotes the diffraction problem.
Taking into account equations (3) and (5) the transmission
coefficient is found to be:

T.=|1-0(vB, + B, + B;)/(gro)l (14)

where B,, B, and B, are given in the Appendix.

INPUT AND OUTPUT DATA

Input data

Despite the fact that the configuration of the floating
breakwater suggested herein is almost the simplest po-
ssible, it is required, at least at first sight, to specify ten
different input quantities. These are given in the following
table:

A wave length of the incident wave
ro amplitude of the incident wave
p water density

g acceleration of gravity

wave data

T draft

¢ depth of the centre of gravity

m mass per unit breadth

I. moment of inertia per unit breadth

breakwater data

K spring constant per unit breadth

mooring data{b depth of mooring point

In order to reduce the number of parameters we limit the

discussion to homogeneous plates the density of which is

one half of the water density and with a thickness o.
The mass per unit breadth of such a plate is pd7/2. An



Simple mathematical model of a floating breakwater: M. Stiassnie

o8

r/’x
Figure 2. The influence of the mass parameter on the
transmission coefficient (K =0)

additional concentrated mass per unit breadth, pé7/2 in
magnitude, is set at the lower end of the plate. Thus, the
total mass is equal to the mass of the water displaced by
the body:

m=pST (15)

The centre of gravity of the breakwater is therefore at the
depth:

¢=075T (16)

which guarantees stability of floatation.
The moment of inertia per unit breadth of this plate is:

=5p5T3/48 17

The above assumptions reduce the number of breakwater
data parameters from four (T, ¢, m, ) to two (T, ) putting
the overall number of input data parameters on (8).

Next, we choose 4, (4/g)'/* and pA® as length, time and
mass scales respectively and switch to non-dimensional
variables. We also recall that the wave steepness para-
meter, r,/4, is only weakly involved in the computation
because of the linearity assumption.

As a result, the original set of ten quantities is reduced
to a set of four most relevant non-dimensional input
parameters, namely, a geometrical parameter 7/, a mass
parameter §/4, a mooring stiffness parameter K/pgl and a
depth of mooring parameter /T In the next section we
present results for a wide range of T/ (from 0 to 2
computed and plotted in increments of 0.01) and for
various relevant combinations of the remaining three
parameters.

Output data

Regarding the output data we choose to calculate and
present graphically three output quantities which are
significant for engineering applications and which charac-
terize the so-called breakwater performance. These three
quantities are: T, the transmission coefficient (equation
14); £, the non-dimensional mooring force given by:

J=F/lpgrod) (18)

where F is given in equation (12); and 4, the non-
dimensional horizontal displacement of the point O:

d=vl/(oro) (19)

The influence of the input data on the output data is
presented in detail in the following section.

RESULTS AND DISCUSSION

The results are presented in three groups of figures
regarding the various influences on the performance of the
breakwater. The first group gives an indication about the
influence of the mass of the breakwater; the second shows
the influence of the stiffness of mooring; and the last
focuses on the influence of the location of the mooring
point.

The influence of the mass parameter

In order to check the influence of the mass on the
performance of the breakwater we set K =0 and give the
mass parameter the values 6/4=0, 0.01, and 0.1.

Figure 2 shows the variation of the transmission
coefficient T, as a function of the draft T/ for the above
mentioned three selected values of 6/1. An additional
curve, representing a fixed plate is also presented in this
Figure. For a fixed plate the transmission coefficient is
given by®:*

T.=K,[(=l,)*+ K" (20)

There is almost no doubt that additional curves, for any
numerical value of §/4, will pass between the curve for §/1
=0 and the curve for a fixed plate (which seems to fit the
hypothetical case of 6/4 = c0). From Fig. 2 we see that the
transmission coefficient for the case 6/4=0.01 is almost
the same as that for a weightless breakwater, and that the
curve for the case §/A=0.1, (which seems to be a
reasonable upper limit to what one still may call a ‘thin’
plate) has a trend similar to the curve for 6/4 =0 but with
smaller numerical values. For example, the required draft

to obtain T,=0.5 is equal to T/4~0.70, 0.57 and 0.13 for

the cases 6/4 =0, 0.1 and the fixed plate, respectively. Thus
it is concluded that, in order to achieve significant
influence, very big masses are needed and, when consider-
ing a breakwater with a small mass, it is reccommended to
use the minimal mass required by structural
considerations.

Figure 3 shows the horizontal displacement d for a free
breakwater (K =0). In the case of a weightless breakwater
(6/A=0) the displacement decreases from d=~1 for TjA

* Itis pointed out that an error has crept in equation (17.5) of ref 6, as
well as in other places in the same section, namely the n appearing under
the square-root sign should be replaced by n2.
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Figure 3. The influence of the mass parameter on the
horizontal displacement (K =0)
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Figure 4. The transmission coefficient, for T/A=0.1, 0.2
and 0.7, as a function of the mooring stiffness parameter
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Figure 5. The influence of the mooring stiffness parameter
on the transmission coefficient (=0, b=0)

=0* to d<0.02 for T/A=2. The curve for §/A=0.1
indicates significantly smaller oscillation than those for
6/A=0, especially for small drafts.

The influence of the mooring stiffness parameter

In order to study only the effects of the stiffness
parameter the mass parameter is removed by setting d =0.
The point O (intersection of breakwater with water
surface) is chosen arbitrarily as the mooring point, so that
b=0.In all three Figures, (Fig. 5 for T, Fig. 6 for fand Fig.
7 for d), three different springs are considered: a weak
spring for which K/pgi=0.01, a medium spring, K/pg4i
=1, and a strong one, K/pgA=100. In order to give an
indication about the origin of the terminology (weak
spring or strong spring) we show in Fig. 4 the variation of
the transmission coefficient, for the different drafts T/4
=0.1,0.2 and 0.7, as a function of K/pgA. It can be seen in
this Figure that for all values of K/pg4 above 100 there is
no influence of the stiffness on T, hence all springs having
K/pgA 2100 are considered as ‘strong springs’. Similarly it
can be seen that there is no effect on T, for K/pgi below
0.01 which is considered as the limit of ‘weak springs’.

The transmission coefficient for the weak spring (Fig. 5)
1s very similar to that of a free breakwater (Fig. 2) except in
the neighbourhood of T/4 ~0.03 where a sharp decrease in
T, is noticéd. This decrease in T, is involved with increase
of the mooring force (which is elsewhere very small for this
spring, see Fig. 6), and an ‘explosion’ in the horizontal
displacement (Fig. 7). The numerical calculations near 7)A
=0.03 employed T4 increments of 4 x 10™* and resulted
in a maximum displacement d=16. There is almost no
doubt that this result indicates a resonance phenomenon
and higher values of d should be expected when using
smaller increments of 7/A in the calculation. The be-
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haviour of the breakwater with a strong spring is generally
similar to that of a rigid plate, for which the non-
dimensional horizontal force is given®, by

f=2TS,/Mr*I} + K3)*/? (21)

The most interesting results are obtained for the medium
spring (K/pgl=1). In this case the transmission coef-
ficient (Fig. 5) is smaller than that for a rigid plate for T/4
<0.19 (for T/A~0.15, T,=0). On the other hand, for T}/
20.15 the transmission coefficient of the medium spring
increases and reaches T,=1 for T/A~0.67. Generally
speaking, for T/4>0.53 the performance of a breakwater
with medium mooring is worse than that without any
mooring. ‘

Note that the phenomenon, in which T, reaches the
values of 0 and 1 (for the medium spring) resembles the
results for a configuration of two thin vertical barriers
obtained by Srokosz and Evans®. To conclude, the
various and sometimes surprising phenomena, caused by
the introduction of a mooring system, call for caution in
breakwater design.

The influence of the depth of mooring parameter

Here we set 6 =0, K/pgA=1 and check the results for
three different points of mooring. Namely, mooring at the
water surface, b/T=0; at the middle point of the break-
water b/T=0.5, and at the lower edge b/T=1. Generally
speaking, the differences between the various mooring
depths are insignificant, regarding the transmission coef-
ficient (Fig. 8) and the mooring forces (Fig. 9). However,
from Fig. 101t is seen that mooring at the lower edge of the
plate allows larger displacements (significantly larger in

<= Xlogh + OO0

a8l — = = g1
Xfogh - 100

e Fusape

0 2 ) 3 8 : 20
In

Figure 6. The influence of the mooring stiffness parameter
on the mooring force (6=0, b=0)
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T/)AD
Figure7. The influence of the mooring stiffness parameter
on the horizontal displacement (=0, b=0)
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Figure 8. The influence of the depth of mooring on the
transmission coefficient (6 =0, K/pgl=1)
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Figure 9. The influence of the depth of mooring on the

mooring force (=0, K/pgi=1)
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Figure 10. The influence of the depth of mooring on the
horizontal displacement, (6=0, K/pgi=1)

the region where T, ~0) than the other two alternatives, as
should be expected.
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APPENDIX

The expressions for the coefficients, appearing in equa-
tions (6) and (7) are as follows:

Aa2 =4pa T2 SY/[n*I}(W) + Ki(w)]
Ao =4poTH(S, — n/4P {1 [ Ii(p) + Ki(w)]1}

Rpa=Asy =4pa T3S (S, —~m/&)/{ulr*I3(u) + Ki(w)]}

Moy =(4/m)pT?*{0.5~So/u+Sq Y~

Sy (T/ /[ 1w + K ()]}

fas=@mpT> {112+ 1/2u—So/p* +So /i —
[(S,T — 2l /)2 [n* L) + K31}
faz =(4mpT3{m/12+ 12— So/u® + ¢ /u® —
[(S; — /4T /u?Ym* I () + Kiw1}
Hoo=4/m)pT*{1/24% —n/12p—m* /64 —
(1/u® +7f4u?)S o+ 8o /u* —
(S, = /AT /i~ py,m/4)/p*/
[ () + KW}
In the above formulae T, Ty and y, are given by:
C=y, —uy, —0.57K, (1)
v =m215 (Wl (1) — Kq " (WK, (1)
72 =7 Lo (1) — KoKy (1)
o =Sy, — uSo[n* 11(1) + Ki(w)]

where S =0.5n[Io(1)+ Lo(1)], Lo is a Struve modified
function of order zero, K, K|, I, I, are Bessel functions,
and

The coefficients in equations (13) and (14) are:
B, =2TS,/[nl (1) —jK ()]
B,= 2T2(S1 - 71/4)/{.“[7’-'11(#) _jK1(l‘)]}

B, =mnor, Tll(ﬂ)/{/‘[n11(#) _jK1(#)]}
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ERRATUM

‘A simple mathematical model of a floating

Research, 1980, 2, 107-111:

The author regrets overlooking an algebraic error in one
of Haskind’s formulae. The term:

Ty (mp 8 + i+ 1/2)

should be added to the expression for Uy, In his equation
(2.18) as well as in the Appendix of the paper.

The error was detected as a result of a poor fit which
was obtained while comparing the mathematical model
with results of some preliminary wave flume experiments,

/

breakwater’, by M. Stiassnie, Applied Ocean

All the other expressions for the damping and added
mass coefficients as well as the new expression for Hag
yield numerical values which are the same as those given
in tabulated forms by Kotik (1963), Porter (1965) and Mei
(1976) (all of them were published in the Journal of Ship
Research).

Unfortunately, the correction for Haq results in some
quantitative changes in the Figures of the paper.

Readers who are interested in the corrected set of
Figures are advised to contact the author directly.
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