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ABSTRACT

Steady laminar parallel flow along fixed cylindrical surfaces or within cylinders or prisms, obeys the
Navier-Stokes equations and is described by a linear inhomogeneous partial differential equation of
the elliptic (Poissen) type. A survey is made of the various boundaries which are described by algebraic
polynomials of order 2, 3, and 4, and recursion formulas are given for polynomials of a higher order.
For open profiles, e.g. between two intersecting planes, or within hyperbolic cylinders, more than one
flow can be obtained for the same longitudinal pressure gradient. The discussion is extended to un-
steady flow, which obeys a linear inhomogeneous parabolic equation. Applications are mentioned,
¢.g. in boundary layer theory; explanations of the so-called irreducible (ineffective) porosity in porous
media; torsion of shafts with algebraic profiles, etc,

NOTATION
A, a, b — coefficients X, ¥,z — cartesian coordinates
D — discriminant x + iy — complex number
Ff — function z — elevation
ok, om,n, — coenstants . a, By — coefficients
N — order of polynomial v -— kinematic viscosity
P — plp+ g2 P —  density
P —  pressure QIS =1/ — fluidity
R ~— 1eal part of complex number w — harmonic¢ function
¢ — time . w, = Bw/B1
¥V — velocity vector 5a s
u v, W, — its cartesian components Wa = O2w[0x%,
Wo —  maximum velogity Wyy = 32w/3y2
INTRODUCTION . . . .
' is proportional to the piezometric head (Z + p/gp).
Viscous flow of a constant-density liquid obeys the In the special case of flows parallel to the z-axis
linear continuity equation of a cartesian coordinate system (x, y,z), the velocity
i vector V (u,v,w) has only one non-vanishing com-
divV =0 (1

ponent (w), which at a given instant is constant along

‘and the non-linear Navier-Stokes equations the streamline. Equations (2) refluce'to a l.inear in-
: homogeneous second order partial differential equa-
Vit+curlV x ¥+ grad(V?/2) = —grad P+ W2V (2)  tion of the parabolic type

where
W, = g'] + v(wx.\: + Wyy); gJ = "’Pz (4)
P =plp+ gZ 3 _ . _ o
— J is the piezometric gradient, which in our case of
TORESSOT . - . .
** Graduate Assistant . constant velocity is either constant or a function of
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time (¢} only. When it is constant, we shall consider
only the case J > 0, i.e. of piezometric head decreas-
ing in the direction of flow.

In stationary flow Eq. {(4) becomes a linear inhomo-
geneous second order partial differential equation of
the elliptic type, the so-called Poisson equation

Wex + Wyy +2f = 03 = gi2v &)
Its general solution is
W= jy o (6)

w is the solution of the harmonic (Laplace) equation
2

Wep + 0y, =0 (7)

We assume that the flow boundary is a fixed cylindrical
wall of generatrices parallel to the z-axis and of
equation f(x,y) = 0. By the non-slip condition the
boundary condition at that surface is

w=0 at f(x,y) =10 @

When the flow occurs within a cylinder whose cross-
section is a closed curve, Eqgs. (7). (8) have a unique
solution. In an unbounded domain this is not always
so, as will be shown later.

GENERAL SOLUTION
Berker (1963) gives the general solution and some
particular solutions of Eq. (5).
Equation (7) is satisfied by the real (R) or imaginary
part of any analytic function of the complex variable
(x + 1)

R{ = RF(x +1iy) )]

Among the numerous functions f(x, y} obeying Eq. (7)
a special case is that of a power series in (x + iy)

N
Flx +iy) = X (b + ibp)(x + ip)* (10)
k=0
b,, by are real numbers. By Eq. (6)
mtn=ksEN
w = X Amnxmyn "ijz (11)

m,n=0

As we consider only flow in the direction of decreasing
head (or pressure), j >0
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'—ﬂm-i-n=k§N
W/j = Z l’:zmnxmj"‘" - y2 = f(xa y) (12)
mun=9
A k h
Do = Am.ﬂ“] = by n (n=k-m= 4n,)
Lk
= _b"'(n) (n=k—m=4n+1)
k 3
= —b, " (n=k—m=4n,4+2) (13)
Ak
= b"(n (n=k—-m=4nr+3)
k) = klimln! (n=Fk—m)

By the non-slip condition (8), the velocity w vanishes
along the cylindrical surface of the algebraic equation
of order N

mtn=k=N

fx,p)= X

m,n=0

m. 2
X Y — )" = 0

{14)

Another way of computing the coefficients a,, is
to introduce Eq. {12) into (5) and equate to 0 all the
coefficients of the terms in x™y*. We obtain

g+ ags+1=0
(m+2)(m+Dagsz o+ {n+2)n+Da, 1y 2=0; (15)
m+n>2
Developing w into polynomials of the fifth order
wii = f(x,5) = ago + [ar0% + agy] + [a20%* +
ayyxy — (1 + aro)y*] + [as0(x® — 3xy%) +
+ ag3(¥? — 3?2y 4 [aaolx* — 6x2p% + y¥ +
+ a3 (xy — xp3)] + [aselx® — 10x3p + 5xp*) +
(16)

The coefficients agg, @19, Q01> G205 Q11> G305 Q035 Ldos
@31, @sq, gs,-*+ are arbitrary. Any other coeflicient
A, 18 of the form (13} with b, b, arbitrary. Equation
(16} is expressed as the sum of polynomials of order
1,2,3,4, -

wij =100 y) = aoo + 1+ ST 4 (AT

The equation of an isovel {(or isotach, line of equal
velocity) is w = w; . At the boundary, by Eq. (8)

+ ags(5x*y — 10x2y% + y5)] + -
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W =f(x,}") =0

This is the zero isovel. We may take any isovel w = w,
as a new boundary, if the new velocity is

wo= fx, V) - W, (18)
This 1s also a possible flow, as it obeys Eq. (3).

In what follows we shall survey the polynomial
solutions (16) of successive orders 2,3,4.

. POLYNOMIALS OF ORDER 2

The guadratic equation
Fx ) = ago /1 +F7 = ago + (aex + agy) +
/
+ [aapx® + ayyxy — (azo + Dy2] (19

has the discriminant

D =i, + 4azofaze + 1) (20)

For D<0, ie, when —1 <a,,<0, f(x,y5)=0
gives an ellipse of semi-axes (a,b). After displace-
ment and rotation of the axes, its canonical equation
is

x¥a? + y3bt =1 2D

The velocity w(x,y) is

wiwy = 1 — x*fa® — y?(b%; wy = jl(1]a® + 1/b%) (22)

The isovels are coaxial similar ellipses. The velocity
distribution curve along the x-axis is a parabola con-
cave downwards with a maximum w, = w(0,0) at
the center (Fig. 1). No such flow is possible outside
the ellipse, as there w < 0 for j > 0.

Fig. 1. Eliipse.
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In the special case of circular boundary of radius a
Joyy =4y’ —at =0

wiwg = 1 —{x* + yhja®; w, = ja’[2

For D>0 we get a hyperbola whose canonical
form is

xat — yipt =1 (23)

Fora < b,ie. —1< a,, <0 the velocity is

wiwg = 1 —x%a? + y2/b%; wo = ji(lja® — 1/b%) (24)
For a > b, 16 a,,>0, 1t 1s

wiwg = x%ja’ — y?/b? — 1; wy = jl{1/B* — 1/a?) (25)

Equation (24) represents flow between the two
branches of the hyperbela (23) of asymptotes
+ y/x = bfa>1 (Fig. 2). The isovels are hyperbolas
with the same asymptotes. Along the asymptotes
w = W,; near the y-axis w > wy; near the hyperbolas
w < wg. The velocity curve along the x-axis is a
parabola concave downwards; and along the y-axis
a parabola convex downwards,

Fig. 2. Hyperbola.

Equation (25) represents flow inside the hyperbola
(23) of asymptotes + y/x = bja < 1 (Fig. 3). The iso-
vels are hyperbolas with the same asymptotes. Along
the x-axis w{x} is a2 parabola convex downwards.

Interverting x and y, a and b, Eq. (24) becomes

wiwg = 1+ x2/a® — y*/b*; wy = j/(1/b* — 1/a®);
b<a (26)



_X
y=5

Fig. 3. Hyperbola.

Flow occurs inside the hyperbolas of asymptotes
+y/x =bla<l.
Interverting x and y, a and b, Eq. (25) becomes

wiwg = pib* — x*la® — 1] wo = jl(1fa® — 1/b%);
b>a (27)

Flow occurs between hyperbelas of asymptotes
T yix = bla>1.

A special case is flow between two intersecting
‘planes y = 0, y = mx, enclosing an angle § = tan"'m

(Fig. 4). Then ago, do1, G109, A20=0, and

Fig. 4. Angle.
(28)

wij = y(mx ~ y)

The isovels are hyperbolas asymptotic to the two
boundaries. The curve w(y) at a given x is a parabola
concave towards the base. Along the bisector it is a
parabola convex downwards.
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When the two planes are parallel (8 = ) of dis-
tance h, we get the Poiseuille flow

wfj = y(h — y) 29

w(y) is a parabola concave to the base.

For D = 0 we get flow inside a parabolic cylinder
of the canonical equation and velocity

x =y k, w=jlkx —y?); aspay, =0 (30)

The isovels (Fig. 5) are parallel parabolas. The curve
w{x) at a given x is a parabola concave towards the
base.

Fig, 5. Parabola.

POLYNOMIALS OF QRDER 3
‘When the polynomial f(x, ) of Eq. {16} is of order 3,
it can sometimes be expressed as the product of three
linear polynomials f7; as the product of a linear poly-
nomial with a quadratic polynomial (f™); or as an
irreducible cubic (9
£ =7
|
f=ryrs
f e fIII
Case f = fif2f3

By an adequate choice of axes we may write

(31)
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w/'j = Ky(ax — y') (b -y IT.!X} (32)

The oaly solution is that of an equilatreal triangle
of side b

/3;

N k=1/b

(33)
The isovels w = w, are closed curves of equation

wiwy = (54/6%) 3(3x — (b — y — /3%) = wijw,
(34)

0= {4 =

The curve w(y) in the section through the centre and
a vertex (Fig. 6) has a maximum wy = jb*/54 at the
lower third and an infiexicn point at the upper third,
with w/w, = 1/2. At the vertex tI;1€ curve is tangent
to the base,

7f|]f‘.l]lT'llHI\!]i[H\IHHFUH{I\\‘HIIHIIIHHHIIH
Fig, 6. Equilateral triangle.

By Eq. (18) flow within a cylinder of the form of
an isovel (34) is represented by

Wiy = (54[6%). (/35— ) (b—y = \3%) — wy/wo;
W, < Wg

(39)

When choosing w, > Wy/2, we obtain a curve w(y)
through the center without inflexion.

Case f = ff"

Possible solutions represent flow between a plane
(f'=0) and a hyperbolic cylinder (f! = 0) whose
asymptotes are + y/x = \/3—

w/j = y[@oy T anx—y+ ags(y* —3xH]  (36)

Without loss of generality we may assume a;; = 0,
Several subcases are possible.

VISCOUS PARALLEL FLOW
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oy > 3
wijags = y[{y — B —3x% £ 97]
B = 1{2ag3 > 0; 77 = (4ag3a0, — 1)/4ag, (37)

agy > 1/4ags

The only possible flow is in the upper zone between
the herizontal y = 0 and the two branches of the
hyperbola (Fig. 7a)

.
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Fig. 7. Hyperbola and straight line.
(y—B*=3x*+y* =0;

wijags = yi(y — B —3x% + 7]
dyy = lfdagy = B/2; y =0

We get again flow within the equilateral triangular
prism (34),

(38)

oy < 1fdags; 9 =(1— 4'-”03‘5101)[4‘3’(1)3
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Fiow is near the branches of the hyperbola

{(y =By =33 —y? = 0;
wliagy = Y[y — B3* = 3x* = '] (39)
with the two asymptotes + (y — f)/x = /3.
dor <05 f<y
Flow occurs inside the upper hyperbola (39); and
between the horizontal y = 0 and the lower hyper-

bola (Fig. 7). In the latter case the velocity along
the vertical x = 0 has a maximum at
yo=— (/3B + 92 - 28)/3

The isovel wi=w, has a saddle point with two isovels
passing through that point. The isovels w < w, are
more or less parallel to the boundaries. The isovels
w > w, are two branches of a near-hyperbolic form.
The existence of a saddle point singularity in parallel
flow is an unusuoal feature, It occurs often in nature,
e.g. in flow of water in the interstices of a porous
medium between a rounded sand grain and a larger
flat grain.

dgy =05 f=y

Flow occurs inside the upper hyperbola (39); and
in the corners between the horizontal y = 0 and the
iower hyperbola (Fig. 7c).

agy > 0; B>y

Flow occurs inside the upper open branch of {39);
and in the closed section bounded by the horizontal
¥ = 0 and the lower hyperbola (Fig. 7d).

Equation (39) represents, for each value of £ (or
a93), a different solution inside the upper hyperbola
for the same value of the hydraulic gradient J {or j)
{when a,,; = 0). Equation (5) has then no unique
solution, but an infinite number of solutions com-
patible with the same boundaries and the same hyd-
raulic gradients.

dg; = 0

We get a polynomial of order 2.

We get similar results as for az4 > 0.
Case f = ™!

Equation (35) is an example of an irreducible cubic
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S The same applies to the cubic derived from (37)

w = jagayl(y — B —3x* £ 71 —w,  (40)

which is identical with an isovel of the former case.

The study of third order curves led Newtor to divide
them into 7 groups following the number and charac-
ter of their asymptotes (Savelov, 1961). By Egs. (17),

(16)
F,y) = ago + 1+ f 1+ ]
f1o=aex + apyy L
= ayex® 4+ agyxy — (L4 ag)y” | (41
== ane(x® = 3xy%) + ags{(y? — 3x%y) jl

If y = mx +n is the equation of its asymptotes, we

get m as a root of the cubic equation

Agsm® — 3azom” — 3ag3m + a9 = 0 (42)
and n from the equation
3n(agym® — 2a;om — dg3) =
(43}

2
= (14 azp)m” —dyyMm— asz

When the 3 roots of Eq. (42) are real and different,
we obtain three asymptotes. The curve then consists
of 3 hyperbolic portions and of a closed oval (Group
No. 1). Sometimes the oval is missing, as e.g. the curve

y? = {x* = D3 - 1/x)

wij = x}3—xy* - x*—x/3+1 j (44
This curve (Fig. 8) consists of 3 distinct portions, two
of a hyperbolic nature and a third with a single asymp-
tote. The flow is possible only within the right curve

or between the other two curves, The isovel w = j
consists of the y-axis (x = 0) and the hyperbola

¥ -3y =3x—1=(x—3/2-3y* ~ 134 =0
(45)
which is of the type of Eq. (23).

POLYNOMIALS OF ORDER 4

We shall consider a few chosen examples.
Flow between two inclined planes of equations

y=0, mx—y=20

As the velocity vanishes at those plane boundaries,
the velocity can be written as

VISCOUS PARALLEL FLOW

Fig. 8. Cubic.

wij =10, yy=y{mx— (1 +F + FLL I 40

F! =g x+ayy

FIT = p.x? 4+ byxy + bsy? {46)
FT = 63 4 ex?y + 033" + ¢3)°

Let us introduce this inte Eq. (5) and equate to 0 all
coefficients.

For f(x,y) = y(mx — y)(1 + F) we get 47)

m=afa, = & \/ 3, flow in an equilateral triangular
prism.
For f(x,yy=y(mx—y}{1+ F'") we get

m = +1; f(x,y) = ¥(x F y) [balxy £ x*) £ 1]

Figure 9 shows the flow domain for m = —1, b, = 1.
It describes flow between two planes at 45°, but
which is completely different from the similar flow
(28) for m= — 1.- Tt describes also flow inside the hyper-
bola with asymptotes enclosing an angle of 45°, which
is completely different from a similar flow (25) inside
{he same hyperbola.

(48)
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Fig, 9. Quartic.

As bo{xy + x?)+ 1 is irreducible, there exists no
algebraic solution of thé type

f = F1IF21F31F4I
For f(x,¥) = y(mx — 1)1 + 1) we get

m=+ /5% 2/5= %3078, £0.726

fy) = ylmx — ) {1 + ca[mx® + x%y
+H(1m — 2m)xy® + 2—1/m?)y*]}

‘L (49)
J

This describes again flow between two planes at an
angle tan—!m, which is completely diflerent from a
similar flow given by Eq. (28). Because of the different
values of m for Ff, F ¥, F1I
a mixed solution of type

, 1t is impossible to have

fx, ¥) = y(mx — yy(1 + F' + F'' + Fh

It can be shown that no algebraic flow of type F'V
is possible inside or outside an elliptic or parabolic
cylinder. Therefore we shall consider flow inside or
outside a hyperbolic cylinder.

FLOW WITH HYPERBOLIC BOUNDARIES
If the hyperbola has the equation
a+kx*—y*=0 (50}
the velocity can be put in the form
Wi = F ) = (a+ ka? — y2) (L4 F 4 F1F 5 e
(51)

where F',F", ... are given by (46)., Introducing this
into Eq. (5) and equating to O all coefficients of
x"y" we get successively the following solutions near
. the hyperbola: '

W/ =a+kx*—y* (32)
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wij = (a—15x2+05y)(1 + a,v)

wii = [a+ kx>~ B3] [1 + by(x* — 'y%)]
f=3F /8 =0172 (or 5828)

(53)

)
I
~ L(54)
B =34 ./8 = 5828 (or 0.172) !
k(3 $2V/§}+ ab; =1 F /2; pp=1 J
This procedure may be extended to higher orders,
thus giving rise to new solutions.
UNSTEADY FLOW

The method outlined above can be extended to un-
steady unidirectional flow inside or outside cylindrical
ducts or surfaces. The partial differential equation, (4)

(55)

is of the parabolic type and J is a function of time
only. The general algebraic solution of order N is

We = g'f(t) + v(wxx + wy}')

ritn=LEN

W o= by

wm,n=0

a?‘llﬂ‘(z)x,ny" (56)

Proceeding as above, with ¢ = 1/v,j = gJ¢/2
a0u®/2 —Jj — doz

Ayo = Q1P/6 — a12/3; a9y = g1 P/6 — ay/3
Agp = abed?/24 + ah,$/12 — a;,/6

dys = a1 Bf6 — asy;  Goa = AgaP/12—a,./6 > (57)
Gsg = afod?/120 +a;,/60 — a,,/10

g = Ay /12 — a35/2; ay. = al,0/12—a4,/)2
an d*/120 + ab $j60 — a,5/10 ]

drg =

Il

Aos

Here the coefficients agg; @19, 815 G11s@oz; @21 G12;

1,025 (39,853 are arbitrary. Equation (56)
written explicitly to terms up to order 5 becomes

W= dgg + (@10% + dord) + (dz0%% + ayyxy + agy?)
+{apx® + 4 X7y + apxy® + agsy®) +

+ (@gox* + a3 X%y + agx?V? + agsxy 4 agey®) +
+{asex® + ag Xy + a33°p? + 05357y + aguxyt o+

+ agsy®) + - {58)

The special case

W o= a00+FI = gy ¥
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represents flow along the plane y = 0.
The special case

If 2
W= gy + F' = agg -+ azox® + doay

represents fiow inside an elliptic cylinder of semi-
axes a,b, with

age(t) > 0; ap(t) = —agofb?
azolf) = Agol2v—] — dgy = —agela’
CONCLUSIONS

1. New, relatively simple solutions of the Navier-
Stokes equations can be found.

2. In the case of open domain$ unspecified at in-
finity different velocity distributions may exist for
identical boundaries and longitudinal piezometric {or

pressure) gradients. This fact should be considered:

when developing formulas for boundary layers.

2. In the case of open domains with narrow sec-
tions, the isovel pattern may show singularities, e.g.
saddle points.
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4, The above results may be applied to all cases
cbeying a similar linear equation of the Poisson type
(Eq. 5): torsion of shafts of constant cross-section;
deflection of thin membranes and soap bubbles;
distribution of the shear stress in canals of constant
cross-section. In particular the irreducible (or ineffec-
tive} porosity of a porous medium can be explained:
this is the partial volume of the stagnant layer near
the boundaries. When computed for some of the
profiles studied here it gives a value of some 209

5. The method can be extended to unsteady flows.
The number of possibilities is then considerably
increased.
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