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A discretized equation for the evolution of random
surface wave fields on deep water is derived from
Zakharov’s equation, allowing for a general treatment
of the stability and long-time behaviour of broad-
banded sea states. It is investigated for the simple
case of degenerate four-wave interaction, and the
instability of statistically homogeneous states to
small inhomogeneous disturbances is demonstrated.
Furthermore, the long-time evolution is studied for
several cases and shown to lead to a complex spatio-
temporal energy distribution. The possible impact
of this evolution on the statistics of freak wave
occurrence is explored.

This article is part of the theme issue ‘Nonlinear
water waves’.

1. Introduction
Alber [1] has studied the stability of narrow-banded
random waves to inhomogeneous disturbances by means
of an equation derived from the Davey–Stewartson
equation. The long-time behaviour of slightly unstable
modes for this equation was subsequently investigated
by Janssen [2]. In recent years, Alber’s equation has also
been studied extensively by Regev et al. [3], Ribal et al. [4]
and Stiassnie et al. [5].

Alber [1, p. 544ff] addresses the question whether
ocean-wave spectra are stable to inhomoge-
neous perturbations via a bandwidth criterion. While the
fundamental equation used in his study is derived under
the assumption of narrow-banded waves, a homoge-
neous spectrum is found to be stable to inhomogeneous
disturbances if its bandwidth is sufficiently broad. This
somewhat unsatisfying state of affairs invites a direct
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study of the instability of broad spectra, without the limiting processes for narrow bandwidth
employed in the derivation of Alber’s equation.

Some headway was made towards clarifying this situation by Stiassnie [6], who studied the
stability of uni- and bimodal spectra, and found regions of instability even for well-separated
modes on the basis of a random counterpart of an equation obtained by Rasmussen & Stiassnie [7].
In the present work, a rather general treatment of the stability and long-time behaviour of random
seas is initiated, and applied herein to the most basic case of degenerate four-wave interaction.
It should be emphasized that the intention of the present work is not to attempt to model ocean
waves, but rather to study the leading-order effects arising in the statistically inhomogeneous
description of random wave interaction.

2. A discretized equation for broad-banded random seas
The starting point of the present study is the reduced Zakharov equation introduced in [8] (see
also the discussion by Craig & Wayne [9]) for the nonlinear interaction of deterministic waves.
This is the foundation of many statistical model equations for random wave fields, including
the kinetic equation (KE) [10], the modified kinetic equation (MKE) [11], the generalized kinetic
equation (GKE) [12], as well as the Alber equation (AE) [13].

The discretized version of the Zakharov equation is obtained by substituting b(k, t) =∑N
i=1 bi(t)δ(k − ki), for discrete wave vectors ki, where δ is the Dirac delta distribution, and

integrating with respect to k, to yield

dbn

dt
= −iωnbn − i

∑
p,q,r

Tnpqrb∗
pbqbrδ

qr
np. (2.1)

Here ∗ denotes a complex conjugate, δ
qr
np is a Kronecker delta function with the property that

δ
qr
np =

{
1 if kn + kp = kq + kr,

0 otherwise,

and Tnpqr = T(kn, kp, kq, kr) is the symmetrized kernel introduced in [14] (see also [15, Ch. 14]).
Here, the complex amplitudes bi(t) are functions of time t only, related in the present discretized
formulation to the free surface elevation η(x, t), to leading order, by

η(x, t) = 1
2π

N∑
i=1

√
ω(ki)

2g
[bi(t) eiki·x + bi(t)

∗ e−iki·x]. (2.2)

For deep water, which is used throughout this manuscript, the frequency ωi = ω(ki) is related to
the wavevector ki by the dispersion relation ω2

i = g|ki|, where g = 9.81 m s−2 is the acceleration of
gravity.

As the aim of the present study is an examination of the stability and long-time evolution
of wave spectra, it is necessary to develop a suitable equation for the one-time, two-component
spectral correlation functions

rnm(t) = 〈bn(t)b∗
m(t)〉, (2.3)

where 〈 〉 denotes an ensemble average. The stochastic model equations mentioned above (KE,
GKE, MKE and AE), while requiring various underlying assumptions about the statistical
homogeneity of the wave-field (or lack thereof), and the order of the approximation, are all
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derived by making use of a quasi-Gaussian hypothesis (to replace higher-order averages by
products of lower-order averages) (see [16]), and the same is employed herein. Subsequently,
the derivation proceeds in a manner analogous to [1] or [13]. The time evolution of the rnm is
given by

drnm

dt
= irnm(ωm − ωn) + 2i

⎛
⎝∑

p,q,r
Tmpqrrpqrnrδ

qr
mp −

∑
p,q,r

Tnpqrrqprrmδ
qr
np

⎞
⎠ . (2.4)

Define Rnm(t) := rnm ei(ωn−ωm)t. Substituting this into (2.4) yields

dRnm

dt
= 2i

⎛
⎝∑

p,q,r
TmpqrRpqRnr e−i�m,p,q,rtδ

qr
mp −

∑
p,q,r

TnpqrRqpRrm ei�n,p,q,rtδ
qr
np

⎞
⎠ , (2.5)

where �i,j,k,l = ωi + ωj − ωk − ωl. Equation (2.5) is the discrete analogue of [13, Eq. (19)], and seems
to be a rather convenient model equation for future studies of inhomogeneous water–wave fields,
as was pointed out by Janssen [11].

3. The degenerate four-wave example
Rather than analyse (2.5) directly, it is convenient to make the simplifying assumption that only
three distinct waves are present, i.e. the sums over p, q, r are allowed to take on only values in
{a, b, c},1 corresponding to the wave vectors ka, kb and kc, so that 2ka = kb + kc. This leads to the
following system of six ordinary differential equations:

dRaa

dt
= 4iTaabc[RabRac e−i�aabct − RbaRca ei�aacbt] (3.1)

dRbb

dt
= −2iTbcaa[RabRac e−i�aabct − RbaRca ei�aabct] (3.2)

dRcc

dt
= −2iTaabc[RabRac e−i�aabct − RbaRca ei�aabct] (3.3)

dRab

dt
= 2i[Rab(2TbabaRaa + TbbbbRbb + TbccbRcc − TaaaaRaa − 2TababRbb − TaccaRcc)

+ Taabc ei�aabct(RcaRaa − RbaRcb − RcaRbb) + RcbRac(Tbcbc − Tacac)] (3.4)

dRac

dt
= 2i[Rac(2TcacaRaa + TcbbcRbb + TccccRcc − TaaaaRaa − TabbaRbb − 2TacacRcc)

+ Taabc ei�aabct(RbaRaa − RbaRcc − RcaRbc) + RabRbc(Tcbcb − Tabab)] (3.5)

and
dRbc

dt
= 2i[Rbc(TcaacRaa + 2TcbbcRbb + TccccRcc − TbaabRaa − TbbbbRbb − 2TbcbcRcc)

+ Taabc(ei�aabctR2
ba − e−i�aabctR2

ac) + RacRba(Tcaca − Tbaba)]. (3.6)

It may be shown that the system (3.1)–(3.6) has the following conserved quantities:

I1 =
∑

i

Rii, I2 =
∑

i

kiRii and I3 =
∑

i

|Rii|2 + 2
∑
i�=j

|Rij|2, for i, j ∈ {a, b, c}. (3.7)

In the absence of inhomogeneous terms Rij(i �= j) this system undergoes no evolution at this order
O(R2). This leads to the question whether the homogeneous state (with Raa, Rbb and Rcc terms
only) is stable to inhomogeneous perturbations.

1These three waves are usually called a ‘degenerate quartet’ because the wave ka is counted twice.
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(a) Linear stability analysis
Linearizing in the inhomogeneous terms decouples (3.4) and (3.5) from the remaining equations:

i
dRab

dt
= αabRab + βacR∗

ac e−i�bcaat (3.8)

and

i
dRac

dt
= αacRac + βabR∗

ab e−i�bcaat, (3.9)

where the coefficients are given by

αab = −2(Raa(0)(2Tbaba − Taaaa) + Rbb(0)(Tbbbb − 2Tbaba) + Rcc(0)(Tbccb − Tacca))

βac = −2Taabc(Raa(0) − Rbb(0))

αac = −2(Raa(0)(2Tcaca − Taaaa) + Rbb(0)(Tcbbc − Tabba) + Rcc(0)(Tcccc − 2Tcaca))

βab = −2Taabc(Raa(0) − Rcc(0)).

In what follows, the notation � = �bcaa will be employed where there is no risk of confusion. The
linear system (3.8)–(3.9) has a solution in the form

Rab(t) = Rab(0) e−i(�/2+σ )t and Rac(t) = Rac(0) e−i(�/2−σ ∗)t, (3.10)

which is stable if σ ∈ R and unstable if σ has a non-vanishing imaginary part. For given values
of the homogeneous terms Raa, Rbb and Rcc, this may be determined by computing a discriminant
B − A2/4 with

A = −(αab − α∗
ac) and B = −αabα

∗
ac + �

2
(αab + α∗

ac) + β∗
abβac − �2

4
. (3.11)

To further investigate the presence of possibly unstable modes requires the specification of initial
conditions for the homogeneous amplitudes (or spectral action densities) Raa, Rbb and Rcc. The
specification of the three waves is performed by writing, with no loss of generality, ka = (1, 0)2

and kb = (1 + p, q) for some p, q. Consequently, to satisfy 2ka = kb + kc requires kc = (1 − p, −q).
The steepness εi of the three waves ki, i ∈ {a, b, c} is the second defining parameter, which is related
to the amplitude ai by ai|ki| = εi. In fact, for simplicity, εc is taken to be zero throughout. The two
initially present ‘mother waves’ ka and kb will be shown to be unstable to the effects of small
inhomogeneities, and thereby give rise to the growth of the daughter wave kc. A deterministic
counterpart to this situation was recently explored experimentally by Bonnefoy et al. [17].

The initial complex amplitudes are assumed Gaussian, and written as

ba(0) = |ba| eiφa + |μa| eiφ (3.12)

and
bb(0) = |bb| eiφb + |μb| eiφ , (3.13)

where the magnitudes |ba|, |bb|, |μa| and |μb| are Rayleigh distributed, the phases φa, φb and φ are
uniformly distributed over [0, 2π ), and |μi| � |bi|.

Then, neglecting the products of small terms,

Rii(t = 0) = 〈|bi|2〉 = 4
π

〈|bi|〉2. (3.14)

Specifying a value for Rii(0) then means specifying an average value for |bi|, which may be related
in turn to the value of the amplitude ai (see [15, p. 854]) by

〈|bi|〉 = πai

√
πg
2ωi

, so that Rii(0) = 2gπ2 ε2
i

|ki|2ωi
. (3.15)

2Hence |ka| = 1 m−1 serves to determine, together with the gravitational acceleration g = 9.81 m s−2, the scales of the example
cases.
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Figure 1. Region of instability (shaded area) in the first quadrant of the (p, q)-plane for two choices of steepness,
(a) (εa, εb, εc)= (0.15, 0.15, 0), (b) (εa, εb, εc)= (0.15, 0.05, 0). Dashed-dotted blue line: wave-vectors satisfying
the exact resonance conditions 2ωa = ωb + ωc . Red dots: wave-vectors with the largest growth rate (a)
(p, q)= (0.285, 0), Im(σ )= 0.033 s−1. (b) (p, q)= (0.32, 0), Im(σ )= 0.042 s−1. Blue dot: example case (c):
(p, q)= (0.8, 0.31), Im(σ )= 0.012 s−1. (Online version in colour.)

Vanishing εc then implies that Rcc(t = 0) = 0. In the calculations to follow, four degenerate
quartets with three distinct combinations of the initial steepness of ka and kb are considered:
case (a) εa = εb = 0.15, cases (b) and (c) εa = 0.15, εb = 0.05 and case (d) εa = 0.05, εb = 0.15.

Figure 1 depicts the unstable modes in the first quadrant of the (p, q)-plane. The shaded region
contains the (p, q) values such that a wave-field initially containing two waves ka = (1, 0) and
kb = (1 + p, q) with fixed steepness εa and εb, and small inhomogeneities will exhibit an initial
growth of the inhomogeneous contributions with time, and hence give rise to further interaction
among the waves in an averaged sense. Case (d) with εa < εb has negative discriminant, and so
exhibits no instability; it is not depicted. The modes with the largest growth rate are found to be
parallel for both (a) (p, q) = (0.285, 0) and (b) (p, q) = (0.32, 0). In moving from the point of largest
growth along the region of instability, the growth rate decreases, e.g. in case (b) (figure 1b), the
growth rate at (p, q) = (0.32, 0) (red dot) is nearly four times larger than that for case (c) where
(p, q) = (0.8, 0.31) (blue dot).

These results confirm those obtained by Stiassnie [6] using a modified discretization of the
Zakharov equation, and consequently may be seen as a preliminary extension of Alber’s [1]
results to widely separated modes. It may also be observed that the instability range and growth
rate coefficients tend to be smaller for larger bandwidth. It should be emphasized that the
instability here observed is that for the wave–action densities of two ‘mother waves’ ka and kb
to small inhomogeneities. This should not be confused with cosmetically similar deterministic
results [18,19] for the instability of a single Stokes’ wave to modulational perturbations.

(b) Long-time evolution
Having established that there are degenerate quartets—even those with widely separated
modes—for which initially small inhomogeneous perturbations grow with time, the behaviour of
these unstable cases should be investigated. An analytical treatment of the subsequent evolution
is complicated by the high dimension of the nonlinear system (3.1)–(3.6). Consequently, numerical
integration of the system was carried out to analyse the long-time evolution of the four cases
presented in §3a, and summarized in table 1.

In addition to a choice of steepness εa, εb and wavenumber (p, q), initial conditions for the
inhomogeneous disturbances must then be chosen. As delineated previously in §3a, one possible
choice consists in assuming that the complex amplitudes are given as in (3.12)–(3.13):

ba(0) = |ba| eiφa + |μa| eiφ (3.16)
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Table 1. Table summarizing the four cases (a)–(d) considered for long-time evolution.

εa εb ka kb kc
case (a) 0.15 0.15 (1, 0) (1.285, 0) (0.715, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

case (b) 0.15 0.05 (1, 0) (1.32, 0) (0.68, 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

case (c) 0.15 0.05 (1, 0) (1.8, 0.31) (0.2,−0.31)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

case (d) 0.05 0.15 (1, 0) (1.3, 0) (0.7, 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and

bb(0) = |bb| eiφb + |μb| eiφ , (3.17)

where |μa|, |μb| are small compared with |ba|, |bb| and φ, φa, φb are uniformly distributed random
phases over [0, 2π ). Hence, upon averaging,

Raa(0) = 4
π

(〈|ba|〉2 + 〈|μa|〉2), Rbb(0) = 4
π

(〈|bb|〉2 + 〈|μb|〉2), Rab(0) = 〈|μa|〉〈|μb|〉,

Rcc(0) = 0, Rac(0) = 0 and Rbc(0) = 0.

The values 〈|ba|〉 and 〈|bb|〉 are fixed by specifying a wavevector and steepness; see (3.15). It
remains to specify the magnitude of the inhomogeneous contributions |μa|, |μb| which are chosen
such that

〈|μa|〉 = δ〈|ba(0)|〉 and 〈|μb|〉 = δ〈|bb(0)|〉, (3.18)

for small δ = o(1). Note that if either 〈|μa|〉 = 0 or 〈|μb|〉 = 0, the initial inhomogeneous disturbance
Rab(0) vanishes identically and there is no subsequent evolution. In what follows, the terms 〈|μi|〉2,
smaller by a factor δ2 than 〈|bi|〉2, appearing in the initial conditions for the homogeneous terms
Raa and Rbb are neglected.

The evolution of the four cases (a)–(d) is depicted in figure 2. For cases (a) and (b) the
evolution is for the most unstable modes (having the largest growth rate), while for case (c)
very widely separated modes with a smaller growth rate are selected (figure 1). For case (d), the
analysis of §3a showed that all modes are stable when the prescribed steepnesses are (εa, εb, εc) =
(0.05, 0.15, 0), and predicted no subsequent interaction. This is also demonstrated by numerical
integration, as depicted in figure 2d for the parallel quartet (p, q) = (0.3, 0). Note that all plots
are 1000 s long, i.e. 498 periods of the wave ka, although calculations for up to 10 000 s were
performed.

Cases (a) and (b) exhibit strikingly different behaviour. For both, an initial inhomogeneous
disturbance is only present in Rab, and is one order of magnitude smaller than any of the
homogeneous initial values. A period of visually indiscernible interaction for times t < 100 is
observed, during which the terms |Rab|, |Rac|, |Rbc| grow only slowly.

Thereafter, the initially small inhomogeneities for the unstable quartet (ka, ka, kb, kc) grow
to magnitudes comparable to the homogeneous modes. Likewise, the ‘daughter wave’ Rcc

grows and interacts with the other modes. Case (a) exhibits slow, nearly-periodic recurrence
in time. Case (b), on the other hand, undergoes a faster, non-recurring evolution with time.
A similar division of the dynamics into simple recurrence and more complex behaviour has been
observed for the evolution of narrow-banded random seas under inhomogeneous perturbations
via the AE by Stiassnie et al. [5]. Case (c) presents the evolution of the modes (p, q) = (0.8, 0.31)
with steepnesses (εa, εb) = (0.15, 0.05), which corresponds to a very large separation distance
between the modes (‖kb‖ = 1.83‖ka‖). Despite this, significant, though slower, interaction is still
observed. Throughout the numerical computations, the invariants (3.7) exhibit a relative error of
3.1 × 10−14, 2.7 × 10−14 and 9.3 × 10−11 for I1, I2 and I3, respectively.
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Figure 2. Plots of terms Raa, Rbb, Rcc and |Rab|, |Rac|, |Rbc| as functions of time t, from numerical integration of (3.1)–(3.6) for
the cases (a)–(d) with δ = 0.05 in (3.18). The time evolution in (a) (εa = εb = 0.15) and (b) (εa = 0.15, εb = 0.05) is shown
for the fastest growingmodes. (c) The timeevolution for case (c),with (εa = 0.15, εb = 0.05) but formodes (p, q)= (0.8, 0.31)
with a slower growth rate of the instability. (d) (εa = 0.05, εb = 0.15) shows the evolution of a comparable degenerate quartet
of parallel waves when no instability is present. (a) Case (a) for (p, q)= (0.285, 0). (b) Case (b) for (p, q)= (0.32, 0). (c) Case
(c) for (p, q)= (0.8, 0.31) and (d) case (d) for (p, q)= (0.3, 0.0). (Online version in colour.)
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t (s)

Figure 3. Numerically computed plots of Raa for case (a), with different values of δ. Solid curves: δ = 0.05. Dashed-dotted
curves, δ = 0.03. Dotted curves, δ = 0.02. (Online version in colour.)

While the homogeneous states associated with initial values of Raa, Rbb, Rcc may be naturally
assumed to be given, the source of the small inhomogeneous disturbances is less clear. However,
it is shown in figure 3 that the dependence of the subsequent evolution on the size of the
initial inhomogeneities has a particularly simple form. For clarity, only Raa of case (a) is shown
as a function of time, for different sizes of the initial inhomogeneous disturbances. The solid
lines correspond to Rab(0) = 2.5 × 10−3|ba||bb|, the dashed lines to Rab(0) = 4 × 10−4|ba||bb| and the
dotted lines to Rab(0) = 1 × 10−4|ba||bb|, or values of δ = 0.05, 0.03 and 0.02, respectively. Provided
the inhomogeneous disturbances are initially small, the subsequent evolution is unaltered by
changes in their size, except for a shift in the emergence of interaction, i.e. in the duration of
the ‘warm-up time.’
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Figure4. Contours of the variance E for cases (a) and (b). Thedatahavebeen shiftedalong the x-axis tohighlight theperiodicity.
(a) (εa, εb, εc)= (0.15, 0.15, 0) and (b) (εa, εb, εc)= (0.15, 0.05, 0). (Online version in colour.)

4. Spatiotemporal distribution of energy
In terms of the complex amplitudes bi, the free surface of the fluid is written as

η = 1
2π

[√
ωa

2g
(ba eika·x) +

√
ωb

2g
(bb eikb·x) +

√
ωc

2g
(bc eikc·x) + c.c.

]
, (4.1)

accurate to leading order, and where c.c. stands for the complex conjugate terms (see (2.2)). The
variance of the surface elevation (proportional to the energy) associated with this wave field may
be written as

E = 〈η2〉 = 1
2π2

[
ωa

2g
raa + ωb

2g
rbb + ωc

2g
rcc

+
(√

ωaωb

2g
rab ei(ka−kb)x +

√
ωaωc

2g
rac ei(ka−kc)x +

√
ωbωc

2g
rbc ei(kb−kc)x + c.c.

)]
, (4.2)

where rij is defined as in (2.3).
The contours of the variance for cases (a) and (b) are presented in figure 4. It may be observed

that case (a) has a larger homogeneous background energy than case (b), due to the larger
steepness of wave kb (εb = 0.15 versus εb = 0.05). The variance is seen to be periodic in x with
period 2π/p, and quite naturally follows the long-time behaviour: for case (a) the variance is
recurrent in time, while for case (b) the temporal evolution is more complex and non-recurrent.
From these distributions of free-surface variance in time and space, it is possible to obtain
statistical information for the wave-fields.

In each case, the resulting variations in the spatio-temporal distribution of energy may be
interpreted differently: for the recurrent case (a) it suffices to select one cycle of interaction, while
for case (b) the data are truncated up to the point of initial energy transfer (which depends on
δ (see (3.18)), and here occurs at time t ≈ 100). It is thus possible to present empirical (PDF) and
cumulative distribution functions (CDFs) for the variance, as given in figure 5.

In figure 5a, the interaction from time 100 to 480 is used as the basis for the computation of
the PDF and CDF. In figure 5b, the PDF and CDF are computed from the interactions taking place
after the initial warm-up period (from time 110 to 1000). In each case, the variance (4.2) has been
normalized by the homogeneous variance, En = E/Eh, with

Eh = 1
2π2

(
ωa

2g
raa + ωb

2g
rbb + ωc

2g
rcc

)
;

cf. the first invariant (3.7). For case (a) Eh = 0.018 m2, for case (b) Eh = 0.012 m2.
In the recurrent case (a), spatio-temporal variations of the normalized variance (and thus

the energy) range between 0.32 and 1.82, while case (b) exhibits a larger range of 0.015–2.79,
indicating greater departures from the energy of the homogeneous state. In each case, the
dynamics associated with inhomogeneous disturbances have the potential to significantly alter
the wave-field. While the time domain in case (b) reaches only t = 1000 (or approx. 500 periods;
see above), even considerably longer data do not materially alter the distribution, or the main
conclusions.
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(a) Freak wave statistics
It has been noted that the absence of inhomogeneous disturbances leads to an absence of
evolution for the present equations. Consequently, if the complex amplitudes are assumed
initially Gaussian, their statistics will remain unchanged at this order, and for the timescales
considered herein. For a purely homogeneous wave field, the probability of the wave height H
non-dimensionalized by the RMS wave height of the homogeneous case Hrms0 exceeding a value
H0 is calculated directly from the Rayleigh distribution

P
(

H
Hrms0

≥ H0

)
= exp(−H2

0). (4.3)

Taking into account the fluctuations in free-surface variance described above, the probability
of exceeding waves of height H0 throughout the spatial and temporal evolution of the
inhomogeneous wave field may be calculated akin to [4]:

P
(

H
Hrms0

≥ H0

)
=

∫
fE(En) exp

(
−H2

0
En

)
dEn, (4.4)
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where fE(En) is the PDF obtained from the data of figure 5. These probabilities for cases (a) and (b)
are plotted in figure 6. It is observed that the probabilities for encountering freak waves with
heights equal to twice the significant wave height Hs (equivalent to H0 = 2.85) are increased
significantly when the wave field evolves as a consequence of inhomogeneous disturbances. For
case (a) the probability increases by a factor of 4, and for case (b) by a factor of 13. For extremely
high freak waves (exceeding 3Hs), the dynamics of case (a) yield an encounter probability some
two orders of magnitude higher than the homogeneous value of 1 × 10−8, while case (b) predicts
an increase by three orders of magnitude when compared to a homogeneous ocean.

5. Conclusion
Hitherto the stability of random seas has been studied primarily from the standpoint of
narrow-banded spectra. By employing a discretized, stochastic analogon of the reduced
Zakharov equation, which contains no narrow-band restrictions, it seems possible to investigate
directly some simple examples concerning the instability of broad spectra to inhomogeneous
disturbances. This may be understood as a preliminary attempt to extend the analysis of Alber [1]
and others. In addition, it presents a possible point of departure for a study of wave turbulence
beyond the KE paradigm, which is restricted to homogeneous sea states.

While the equation presented is very general, its potential to produce new insight is best
demonstrated by treating a degenerate quartet of waves. Even in this simple case, considering
the interaction of three modes in a model of the nonlinear evolution of a random sea subject
to inhomogeneous perturbations, instability is observed for suitable choices of the two mother
waves ka and kb. For the unstable cases discussed, two waves ka and kb suffice to generate the
third wave kc satisfying 2ka = kb + kc, through mutual interaction. In the cases investigated, the
unstable region is of finite extent, and the maximum initial growth rate of the inhomogeneous
terms occurs for modes with no transverse components (i.e. q = 0). Two cases (a) and (b) evolving
from the points of maximal growth and one case of modes with smaller initial growth (c)
were investigated. Significant interaction was observed for all cases, even with the very widely
separated mother waves ka = (1, 0), kb = (1.8, 0.31) of case (c).

While the cases considered herein, with εc = 0, have unstable modes lying below the curve
of exact resonance 2ωa = ωb + ωc, other cases have been obtained from computations of the
discriminant, including those lying wholly above the exact resonance curve and having fastest
growing modes with p = 0. Exact classifications of the various regimes of instability, and
of the subsequent long-time evolution of the unstable modes remain interesting challenges
for future work. Likewise, while higher-order inhomogeneous equations along the lines of
[13, eqs. (28),(29)] quickly become cumbersome, future work may also be aimed at introducing
O(R3) terms to the equations for the homogeneous terms (see [20]).

The long-time behaviour of the unstable cases is complex and seems in most instances
to be non-recurring. Insofar as the initial inhomogeneous disturbances are sufficiently small
with respect to the homogeneous terms, the subsequent dynamics may be shown to be largely
independent of their actual size; a shift in the magnitude of the initial inhomogeneities gives rise
only to a shift in the time of initial interaction, a type of ‘warm-up’. The physical mechanism
behind these inhomogeneities, possibly related to forcing by the wind, remains a major issue for
future research.

Another fundamental issue which remains to be addressed is the relationship between the
present stochastic model and simulations of the deterministic Zakharov equation. In formulating
the stochastic model as detailed in §2, the relevant statistical properties are assumed to hold
throughout the entire subsequent evolution (see [1, §3.1]). On the other hand, for Monte
Carlo simulations of a deterministic equation with random initial phases, such assumptions
are introduced only at the initial time. Various authors have reported different degrees of
agreement between such Monte Carlo simulations and numerical solutions of the derived
stochastic equations: for the (homogeneous) KE, Stiassnie & Shemer [21] noted the lack of even
qualitative agreement for a toy model of four modes; Annenkov & Shrira [12] subsequently
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modified the Monte Carlo simulations by considering clusters to achieve agreement for four
modes, and also reported good agreement for many-mode simulations close to equilibrium;
for the (homogeneous) GKE, Gramstad & Stiassnie [20] found good agreement using one- and
two-dimensional JONSWAP spectra; for the (inhomogeneous) AE, Onorato et al. [22] found
reasonable qualitative agreement for the onset of instability when comparing with Monte Carlo
simulations of the nonlinear Schrödinger equation using JONSWAP spectra. For our part, the
agreement between equations (3.1)–(3.6) and Monte Carlo simulations of the Zakharov equation
for a degenerate quartet remains an open problem. The inclusion of higher-order effects, or simply
more modes may be necessary. Nevertheless, we believe the dynamics of the simplest occurring
interaction—the degenerate quartet here considered—provide a blueprint for more complex,
physically relevant cases to be considered in future work.

The fact that the presence of inhomogeneous disturbances in an otherwise homogeneous wave
field sets up fluctuations in wave energy in (x, t)-space indicates that the corresponding statistics
of wave height will also be altered. For recurrent dynamics, the resulting energy distribution may
be extended to arbitrary times, while for non-recurrent dynamics the computations have been
performed for an interaction time of approximately 500 wave periods. Assuming that the wave
heights of the homogeneous sea are Rayleigh distributed, the presence of inhomogeneities yields
up to an 11-fold increase in encounter probability for freak waves twice the significant wave
height. It is left to future work to investigate the behaviour of the fundamental equation (2.5)
for a larger number of modes, thus more closely approximating a real sea spectrum. The present
investigation of the most basic case of degenerate quartets already gives a clear indication of
the potential instability of broad sea spectra to inhomogeneous disturbances, and the richness of
the dynamics appearing for the fundamental stochastic equation (2.5). Considerable recent work
has been devoted to resonant interactions and Hamiltonian formulations for problems related
to water waves, including effects of capillarity, vorticity or two fluid layers [23–27], and the
considerations pursued herein for the Zakharov equation for deep water waves may well be
extended to other primitive equations describing various physical or mathematical problems.
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