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Abstract

We investigate the performance of a nonlinear mathematical model against shoaling waves
flume measurements, from both the spectral and bispectral evolution points of view.

A JONSWARP spectrum with y = 2.8, representative of waves measured in the eastern
Mediterranean, was used to simulate the deep water spectral density.

The wave evolution was simulated numerically using the unidirectional nonlinear de-
terministic model, which accounts for wave shoaling and second order (quadratic) non-
linear interaction. The model describes the evolution of arbitrary wide spectra all the way
from deep into shallow water, under the restriction of a mildly varying topography.

The results of the numerical simulations agree well with the measurements. The non-
linear model predictions based on the phases sets derived directly from the spectral analy-
sis of measured data describe well the evolution of the spectrum, in spite of relatively high
dispersion; the numerically simulated bispectra also agree well with the measurements.
The simulations using uniformly distributed random phases (a more realistic frame of
work in many applications) yield also good results for the power-spectrum evolution, but
are less successful in describing the evolution of the bicoherence, for all the data batches
that were simulate. Overall, the performance of the unidirectional model is good and
highlights the usefullness of the numerical modelling for processes in the shoaling zone.

Introduction

As ocean waves propagate through water of decreasing depth, they undergo a spectacular
and irreversible change: the shape of individual waves changes from almost symmetrical
in deep water to one exhibiting sharp crests and broad, flat troughs in shallow water, where



they eventually break. Aside from the theoretical interest these processes arise, one cannot
overstate the importance of the practical aspects. Features like strength, dimension and
operability of coastal structures are decided upon on the basis of significant parameters of
the wave field such as characteristic length, period and height, and the associated mean
flow and water level. The energy transferred to the long waves is closely associated to
the with surf beats and low frequency harbour oscillations that resonate moored ships. At
open sea the long waves are nearly absent from the spectrum. They are generated through
nonlinear interaction among wind waves mostly close to the shore, within a domain of a
few tens of wave-lengths, a process associated to strong phase correlations. '

The evolution of the shoaling ocean waves is essentially a nonlinear one: important
transfers of energy take place among the spectral components, leading to the development
of secondary peaks at superharmonics of the spectral peak frequency and the generation
of subharmonics, often called long waves. The statistical nature of the surface evolves
also from Gaussian to one characterized by nonzero odd-order correlators so that in a
certain sense, the description of the wave field solely by means of the power spectrum is
no longer adequate, and one has to look at higher order spectra.

This report presents some results of a study conducted to investigate the capabilities of
the nonlinear unidirectional shoaling model developed by Agnon et.al.(1993). The model
describes the evolution of arbitrary wide spectra all the way from deep into shallow water,
taking into account the full form of the dispersion relation and the quadratic nonlinear
interactions (among triads of waves).

The unidirectional shoaling model

The evolution equation

The equations governing the irrotational flow of an inviscid fluid with a free surface, after
expanding the surface boundary conditions in power series about z = 0 and discarding all
terms higher than quadratic, are:
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where V is the horizontal gradient and ¢, n and A are the velocity potential, the free
surface displacement and the local water depth, respectively. The origin of the reference
frame is taken in deep water at the still water level, with the z axis upwards. The first
three equations form a closed system for ¢, and 7 is given as a function of ¢ via the last
equation in system (1).

We shall assume that most of the spectrum is in intermediate water depth in most of
the domain under consideration, which is to say that kh = O(1), with & the character-
istic wave number. Also, that the beach slope is mild, that is |VA| = O(e). The small
paremeter € is the order of magnitude of the characteristic wave steepness ka, with a the
characteristic amplitude of the waves.



The main task in the derivation of the evolution equation for a shoaling directional
gravity-wave spectrum is to reduce the three-dimensional system (1) to a single equation
by eliminating the vertical structure of the function ¢. For the details of the original
derivation of the unidirectional shoaling model, the reader is directed to the article by
Agnon et.al.(1993); a more general result, for three-dimensional geometries, was given
by Sheremet(1996). Here we shall confine ourselves only to describe the final results of
their works. .,

For the case of a unidirectional wave field propagating normally towards the shore,
the resulting equation for the complex amplitude of ¢ reads: ‘
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where the amplitude A is defined by:

b= Acosh[k(z + h)]e—ifkdz

cosh(kh) ’
w?
aj. = —g—l = k; tanh(k;h) (3)
and Cy = 3¢ is the group velocity.

For numerxcal integrations purposes the above equation may be brought to a discrete
form, by writing for the velocity potential the Fourier expansion:
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The discrete kernels in Equation 5 are:
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Equation (5) is the unidirectional shoaling model whose performance will be tested in
the sequel against laboratory measurements. Given appropriate initial conditions, Equa-
tion (5) may be integrated numerically to yield the spectral amplitudes A; at any location
inside the shoaling domain. Several problems related to the initial conditions are dis-
cussed in the next subsection.



The initial conditions

If the Fourier modes are known at a certain location, Equation (5) may be integrated
numerically to obtain the wave power spectrum evolution along the whole shoaling region.
The model requires the full spectral information about the sea state at the starting point
(say, at deep water), that is, both information about the spectral density and about the
modal phases. Quite often, the former is available, but phase information is less common.
For example, the spe\ctral data provided by a stochastic third-generation deep-sea wave
forecasting model, that would commonly be used to provide initial conditions, contains
no phase information.

When the initial spectrum is known but the phase information is absent, the model may
still be integrated under the assumption that the sea is Gaussian at the starting point (the
initial phases are uniformly distributed). This is another way of saying that at the starting
point (deep water, usually), there is no significant information in the modal phases, and a
realization of the sea may be obtained by simply generating a set of uniformly distributed
random phases to attach to the known modal amplitudes. An unlimited number of real-
izations of the sea surface may be obtained this way; the statistical picture of the waves
evolution is obtained by averaging the results of several runs of the model.

The answer to the question as to how many realizations one should shoal to obtain a
realistic picture of the spectral evolution is ultimately decided by hardware limitations.
The experience has shown that a number between 50 and 100 runs yields a rather stable
estimation of the spectral evolution, which is fortunate if one takes into account that even
with this relatively small number of sets, a 50 realizations run of a 60 spectral components
spectrum takes more than two days to complete (on an Digital AlphaStation250%/%%6 using
~ 100 % of processors resources).

Measurements: data assimilation and reduction

The Bathymetry

The measurements were performed in the CAMERI! towing tank, which is 48m long,
2.45m wide and 1.5m deep, using a model (scale 1:40) of the bathymetry in front of of
the Acre Harbour. Wave reflection was prevented by a sloped beach at the end of the tank
opposite to the wave-maker. The part of the beach that was of interest for the present
simulations starts at 30m depth (prototype). The evolution of the waves was monitored
from 30m depth to the 6m depth (prototype), at 13 locations uniformly distributed along
a region roughly divided into two segments; the first having a slope of about 5%, from 30
to 8m depth, and the second with a slope of about 1%, from 8 to 6m depth (see Figure 1).
Most of the nonlinear evolution occured within the second shorter and shallower segment.

Waves simulation

The sea waves were simulated by generating irregular waves by means of a wavemaker
located at the prototype depth of 30m, 5Sm in front of the first wave gauge. A JONSWAP
spectrum with v = 2.8, representative of waves measured in the eastern Mediterranean,
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Figure 1: Bathymetry and wave gauges locations. The geometrical scale is 1:40. The
vertical lines mark the locations of the wave gauges.

was used to simulate the deep water spectral density. The duration of each simulation was
20 minutes, at a sampling frequency of 25Hz. At the prototype scale this is equivalent to
a duration of aboutl hour and 25 minutes, at a sampling rate of about 4Hz . The data used
in the simulations, consisting of 10 storms, is given in the table below:

[ Peakperiods(s) [94]109]12.2]13.4] 144 ]

Significant Heights (m) | 2.3 | 2.0 | 22 | 1.6 | 1.9
Significant Heights (m) { 2.0 | 16 | 1.5 | 1.3 | 14

and comprises two groups of runs with different significant heights for each of the peak
periods. In the first group of runs, (the higher waves batch), occasional breaking in the
form of plunging and spilling breakers was observed within the most shallow section of
the domain. During the second batch (lower waves), the water was much quieter, with
no plunging breakers observed. A relative decay of about 15% in the linear estimation
of the total energy flux occuring at the shallow end of the flume seems to indicate that
breaking might have occurred in the form of spilling, at this scale usually as cappillary
waves generated at the peak of the wave.

The Spectra

The water level was measured simultaneously at 13 locations uniformly distributed along
the frontal part of the beach, from the depth of 30m to a depth of 6.2m (see Figure 1), by
means of resistance type gauges.

Since the aim was to test a numerical model against the results of the experiment,
the processing capabilities of the computer had to be taken into account, in that we had
to strike a balance between the precision of data reduction and the speed of the numeri-
cal processing. As mentioned before, a 50 realizations run of a 60 spectral components
spectrum seemed to be a reasonable target. With these criteria in mind, standard spec-
tral analysis was applied to each of the 13 channels: the time series were broken up into
overlapping sequences of 1024 data points each; the result was 50 sequences each one of
about 20 waves for the run with the longest peak period in the group (14.4s), and about
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30 waves for the run with the shortest (T, = 9.0s) wave. The sequence length of 1024
points was chosen to provide a better numerical description of the spectral density with
fewer Fourier modes - for the numerical integrations only the longest 60 spectral compo-
nents were used. Each individual sequence was windowed using a Hanning window, then
transformed to the frequency domain usin standard FFT routines. The sample spectral
densities were then ayeraged to obtain the power spectra.

We shall not present results for all cases analyzed, since they exhibit similar trends,
but instead will try to limit the discussion to the representative features of the data. Figure
2 illustrates the evolution of the measured spectral density for the higher wave of the
two runs with peak period T=12.2s, at stations No. 1, 9,11,12. The nonlinear energy
transfer from the peak of the spectrum to its first and second harmonic is striking, so is
the excitation of the longer waves in the spectrum. Three frequency domains are separated
by vertical lines: a ‘long wave’ with the upper boundary at about 25s, a ‘medium waves’
domain between ~25s and ~9s and a ‘short waves’ one for waves with a period less than
~9s. It should be stressed that this division is done here only to separate the peak from
its harmonics. For each domain we define a ‘significant height’ by the relation

fa
Hyomain = ¢ ; S(f)df )

where ‘domain’ stands for ‘long’, ‘medium’ or ‘short’ and f; and f; are the corresponding
frequency limits. The above parameter may be regarded as a convenient and intuitive way
to describe the energy within a certain frequency interval. The evolution of the partial
‘significant heights’ is plotted in Figure 3.

The data obtained from measurements at the first station, the one closest to the wave
maker, was used in the initialization of the numerical model. For runs under the assump-
tion of a Gaussian sea, the power spectrum at the first station was completed with different
sets of randomly distributed initial phases generated on the computer and fed to the model
as initial conditions. The results of the numerical integrations were then averaged to ob-
tain the final evolution of the spectrum.

For the case of true phases sets, the data processing was somewhat different. After
breaking the time series into sequences, the individual sequences were transformed to
the frequency domain straight away, without windowing; the resulting complex Fourier
sequences were truncated to 60 components, which were used as initial conditions. The
spectral estimates at the locations along the shoaling region were obtained by first win-
dowing and then averaging the results of the numerical integrations.

The bicoherence

Since the work of Hasselman et.al.(1963), higher order spectral analysis has achieved
a undisputed status as a tool in the study of non-Gaussian nonlinear processes (for a
sistematic application to nonlinear waves in shallow water see for example Elgar and
Guza, 1986 and the references therein). Following are the definitions of bispectra and
bicoherence as used in this work.
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Figure 2: The evolution of the measured spectral density at four locations, stations 1
(30m), 9 (8m), 11 (7m) and 12 (6m), for wave T, = 12.2s, H; = 2.1m. Inset shows the
partial ‘significant heights’ for the long, medium and short waves, in this order.

Let a real stationary random process be represented as a truncated Fourier series

N
£(3,8) = 3 [Anelnament) 4 g1 milinaunt)] (®)
n=1
with k the wave-number given by the linear dispersion relation, w the radial frequency
and A a complex coefficient. The bispectrum is defined as the Fourier transform of the
third order cumulant:
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where C is the third order cumulant and the triangular brackets stand for the averaging
operator. For discretely sampled data the digital bispectrum is given by:

B(wk’wj) = <Akaij* > (10)

W tw;

The bispectrum as defined in (10) will most probably exhibit higher values for higher
values of the (|A.,|?), as higher means yield usually higher variances. For this reason,
in order to isolate the phase correlations alone, it is convenient to normalize the bispec-
trum. Different combinations have been tried in literature; in this work the normalized
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Figure 3: The evolution of the measured total and the partial ‘significant heights’ for the
long, medium and short waves, for the wave with T, = 12.2s, H; = 2.1m.

magnitude of the bispectrum, called the bicoherence, is defined, as in Kim and Powers
(1979):

|B(wr, wa)|?
(1w Au, ) (Ao 12)

which yields a value between O and 1. For a Gaussian field the bicoherence is close to
zero. If there are phase correlations between the modes & and j, the bicoherence will
exhibit a pronounced peak at the frequencies (wy, w;).

Figure 4 presents the measured time series bicoherence at four stations, 1%, at depth
30m prototype, 6" at 17.6m, 9™ at 8m depths and 11%* at 6m depth. As it may easily be
seen from the definition, the bicoherence function b*(wy, w;) is symmetrical with respect
to the first diagonal, as the plots also show quite clearly. It is also easily shown that for the
truncated Fourier spectra produced by the numerical model the region above the line y =
(1 — z) fmaz has no meaning. For comparison between the numerical and experimental
results, the reader should therefore confine his attention to what is drawn inside the white
triangle alone. While in deep water, at the first station (30m prototype)the bicoherence is
under the 0.3 level (taken here as the noise level), strong peaks start to develop towards
the depths of 8m and remain strong throughout the shallower portion of the flume. As
said before, a peak at coordinates (f;, f2) indicates a strong phase coupling between the
spectral components of frequencies fi, f, and f; + fa. As expected, the peaks are located
at harmonics of the absolute peak of the spectrum. It is interesting to notice that the phase
correlations weaken slightly in the region where occasional breaking was observed. The
first, deeper segment of the flume (up to station 9) does not seem to be very active in the
generation of phase correlations either.

(1D

52 (wk, wj) =

Numerical results

To illustrate the behaviour of the numerical model we shall present the numerical results
of the integrations for the run with peak period T,, = 12.2s, significant height H, = 2.2m.
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Figure 4: Smoothed bicoherence and normalized spectrum for the measured time series at
four stations: a) 30m, b)17.6m, c) 8m and d) 6m, stations 1%, 6%, 9% and 11%respectively,
for the wave with T, = 12.2s and H, = 2.1m. The increment between the contour lines
is 0.1; the lowest contour is 0.3.



The Spectra

Figure 5 shows the evolution of the spectral density for the runs with Gaussian initial con-
ditions (measured initial spectra and uniformly distributed, computer generated random
phases). The graphs corresponding to the numerical calculations are drawn in continuous
lines. For comparison, the measured spectra points are plotted as circles. Inset are given,
as in the previous griphs, the partial ‘significant heights’ for both the measurements and
the simulations. The shaded area around the numerical spectra has a vertical span equal
to the standard deviation. The ‘significant heights’ evolution is also given and compared
to the measurements, together with the linear estimate of the total energy flux evolution.

Figure 6 show the evolution of the spectral density for the runs with correct initial
conditions (measured initial spectra together with the corresponding measured initial set
of phases). It is interesting to remark that contrary to our expectations, the true phases runs
behave somewhat poorer than the random phases runs. Indeed, not only the agreement
between the measured and the compuuted spectra is less good, the individual realizations
have also a larger statistical dispersion, as shown by the span of the standard deviation.

The computed bicoherence for the wave (T, = 12.2s, H; = 2.2m) is presented in Fig-
ure 7 for the runs with uniformly distributed initial phases, and the runs with measured
phases. As opposed to the spectral evolution, for the case of the bicoherence the inte-
grations that started with correct initial phases develop stronger phase correlation than
the ones with Gaussian initial conditions. Figure 7b exhibits the peaks marking all the
phase correlations one would expect to see; two strong peaks, one corresponding to the
phase coupling of the spectral peak with its second harmonic and another one for the
peak-second-third harmonics phase coupling; three other smaller ones (at the bottom of
the plot) that indicate the correlation between the long waves and the spectral peak and its
harmonics. In Figure 7a the peaks involving the longer waves are lost in the surrounding
noise, and the two stronger peaks appear much less proeminent.

Conclusions

We have studied the performance of a nonlinear mathematical model compared to a se-
ries of shoaling waves flume measurements, and analyzed its results using both the tradi-
tional second order spectral approach as well as the higher order spectral analysis. The
wave evolution was simulated numerically using the unidirectional nonlinear determin-
istic model, which accounts for wave shoaling and second order (quadratic) nonlinear
interaction. For the present mathematical model, the third order spectral analysis tools
(bispectrum, bicoherence) are particularily useful since the mechanism for the energy
transfer within the wave spectrum is in this case only intreractions among triads of waves.

The experiments were designed to reproduce typical severe sea conditions in the
Mediterranean. For reasons of space we presented only one set of comparisons, for the
wave with a peak period of 12.2 s and a significant height of 2.1m, which is representative
of study as a whole.

The results of the numerical simulations of the spectral evolution of the waves are
remarkably good, especially if one takes into account that the Acre batyhmetry is not the
ideal testing ground for the present model: 5% slope means a jump of 20m in depth over
a 400m long stretch, barely twice the deep water spectral peak wave-length, whereas the
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Figure 5: Spectral density, numerical model with uniformly distributed random initial
phases, (line) compared to measurements (circles). Peak period T, = 12.2s, initial sig-
nificant wave height H, = 2.2m. Inset: long, wind and short wave band significant wave
heights, as given by the model and the measurements.Comparison of the evolution of the
band significant wave heights (lower corner left, numerical simulations: lines) and total
energy flux (lower corner, right).
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wave heights (lower corner left, numerical simulations: lines) and total energy flux (lower
corner, right).

12



Depih: 8m Depth: 8m

02

Q.15

o

trequency (i/s)
frequency (1/s)

0.05

ST

8

i i i i .
0 0.05 0.1 0.15 62 0 0.05
frequency (1/s) frequency (1/s}

a b

02

Figure 7: Smoothed bicoherence and normalized spectrum for the computed time series at
station 9, 8m depth for the wave with T,,=12.2s, H,;=2.2m. a) uniformly distributed initial
phases. b) correct phases. The increment between the contour lines is 0.1; the lowest
contour is 0.3.

model was developed under the specific restriction of a mild bottom slope (say 1%). Some
interesting results regarding the capability of the numerical model to simulate the evolu-
tion of the phase correlations seem to indicate (not surprisingly) that the more Fourier
components in the simulations, the better is the accuracy of the results. Since, however,
the numerical effort increases faster than the square of the number of components in the
spectrum, for the moment the limiting number is still rather low.

Overall, the results of the present work, indicate the usefullness of numerical models
in the prediction of the wave evolution in the shoaling region.
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