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The probability of freak waves in an inhomogeneous ocean is studied by integration of Alber’s
equation. The special phase structure of the inhomogeneous disturbance, required for instability, is
provided by bound waves, generated by the quadratic interaction of the stochastic sea with a
deterministic, long swell. The probability of freak waves higher than twice the significant wave
height increases by a factor of up to 20 compared to the classical value given by Rayleigh’s
distribution. The probability of exceptionally high freak waves, with height larger than three times
the significant wave height, is shown to increase some 30 000-fold compared to that given by the
Rayleigh distribution, which renders their encounter feasible. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3012542�

I. INTRODUCTION

Longuet–Higgins1 showed that the wave heights in a
wave field with a narrow spectrum, within the theory of lin-
ear waves, are Rayleigh distributed. From the Rayleigh dis-
tribution one can calculate that the probabilities for waves
that are higher than twice or three times the significant wave
height are 3�10−4 and 10−8, respectively. The latter is such
an extremely rare event that it would require an unrealistic
stay in a stormy area for 30 years or so to encounter these
exceptional freak waves. To encounter the former, a 10 h stay
may suffice.

In recent years a few authors have used the nonlinear
Schrödinger equation and its extensions, in combination with
Monte Carlo simulations, to show that nonlinear interactions
can increase the frequency of freak-wave occurrence by
more than tenfold provided that the sea is very long crested
or basically unidirectional; see Ref. 2 and the references
therein. Extensive literature surveys on freak waves can be
found in Refs. 3–5.

Freak waves may be an essentially inhomogeneous phe-
nomenon. They occur at isolated places and times. Thus it is
of interest to study their statistics using a model for inhomo-
geneous seas, namely, Alber’s6 equation. Alber’s6 equation
designed for treating inhomogeneous wave fields, albeit with
narrow spectra, was used by him and others to study the
instability of homogeneous wave fields to inhomogeneous
disturbances. Alber’s6 findings are actually the stochastic
counterpart of the well-known deterministic Benjamin–Feir
instability obtained for the cubic Schrödinger equation. The
growth rates of the inhomogeneous instabilities are propor-
tional to �2 �where � is the wave steepness�, reflecting the
fact that the time scale of Alber’s6 equation is proportional to
�−2. Although Abler6 did not state it specifically, the choice
of his initial small inhomogeneous disturbances discloses a

certain correlation between their phases and those of the ho-
mogeneous base state.

Stiassnie et al.7 found long-time recurrent evolution of
Alber’s6 equation. They found that the instability which
leads to subsequent recurrent evolution requires specific re-
lations between the phases of the inhomogeneous perturba-
tion and the primary homogeneous wave field. Here we show
that such relations exist when a long, deterministic swell
interacts with a short, stochastic sea.

The theoretical background is given in Sec. II, the cases
studied are specified in Sec. III, and the stability diagram and
the recurrent solution are presented in Sec. IV. Section V
analyzes the probability density function of wave energies,
and the probability of freak waves is derived and discussed
in Sec. VI. The findings are assessed and discussed in Sec.
VII. The calculation of the initial disturbance and some de-
tails about the numerical approach are given in Appendixes
A and B.

II. THEORETICAL BACKGROUND

Alber’s6 equation for narrow-banded random surface
waves on infinitely deep water written for one spatial dimen-
sion reads

i� ��

�t
+

1

2
� g

k0

��

�x
� −

1

4
� g

k0
3

�2�

�r � x

= �gk0
5��x,r,t����x +

r

2
,0,t� − ��x −

r

2
,0,t�	 . �1�

The definition of the two-point spatial correlation ��x ,r , t� is
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where the angular brackets �  stand for the ensemble aver-
age. A�x , t� is the complex envelope of the narrow-banded
sea, related to the random free-surface elevation ��x , t� by
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2��x,t� = A�x,t�ei�k0x−�gk0t� + � . �3�

The correlation for a homogeneous ocean at r=0 is given by
the integral of the energy spectrum

�h�r = 0� = �
−�

�

S�k�dk �4�

and, thus,

�h�r = 0� � Hrms0
2 , �5�

where Hrms0 is the root mean square wave height of the ho-
mogeneous ocean. In a similar way, based on Eq. �3.2� of
Ref. 7 one can assume that for an inhomogeneous ocean,

��x,r = 0,t� � Hrms
2 , �6�

where Hrms
2 is a measure of the average energy density at the

point �x , t�.
From Eqs. �5� and �6� one has
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2
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�h�r = 0�
��x,r = 0,t�

. �7�

The Rayleigh distribution

P�H � Ĥ� = e−�Ĥ/Hrms�
2

�8�

can be rewritten as

P�H/Hrms0 � Ĥ/Hrms0� = e−��Ĥ/Hrms0��Hrms0/Hrms��
2
. �8��

Substituting Eq. �7� into Eq. �8�� gives that for a chosen
value of �,

P�H/Hrms0 	 Ĥ/Hrms0� = exp�− � Ĥ

Hrms0
�2

�h

�
� . �8��

However, the probability to obtain values of � in the range
�� ,�+
�� is given by pdf���, which stands for the probabil-
ity density function of ��x ,r=0, t�. Thus, the probability to

obtain H	 Ĥ throughout the spatial and temporal evolutions
of � is given by

P�H/Hrms0 � Ĥ/Hrms0� =� pdf���e−�Ĥ/Hrms0�2��h/��d� . �9�

The probability density function of ��x ,0 , t� is discussed and
calculated in Sec. V.

III. SEVEN CASE STUDIES

In the present article seven different oceanic combina-
tions of sea and swell conditions are considered. The initial
condition of the sea is assumed to have a Gaussian spectrum,
and the swell is assumed to be monochromatic.

The period of the long swell is Tl=18 s for all seven
cases �which corresponds to the wavelength �s=505 m�, and
the amplitude of the swell, al, is taken to be 1 or 2 m.

The peak period of the shorter sea is denoted by Ts and
varies from 8 to 10 and to 12 s. The initial Gaussian spectra
of the sea are given by

S�k� = 1.45soe−1.64��k − k0�/W�2
, �10�

where k0 is the peak wave number of the sea, 2W is the
spectral width, and 2s0 W is the total energy density. The
values of k0, W, s0, and a few other characteristic quantities
are given in Table I. Note that all seven initial seas have the
same significant wave height Hs=11.3 m.

TABLE I. Different input parameters for seven case studies.

Case A1 A2 B C D E F

Swell conditions

Tl �s� Period 18 18 18 18 18 18 18

al �m� Amplitude 1 2 1 1 1 1 1

�l �m� Length 505 505 505 505 505 505 505

K �m−1� Wave number 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124

Initial sea conditions

Ts �s� Peak period 10 10 10 10 10 8 12

as �m� Amplitude 4 4 4 4 4 4 4

Hs �m� Significant height 11.3 11.3 11.3 11.3 11.3 11.3 11.3

�s �m� Length 156 156 156 156 156 100 225

k0 �m−1� Wave number 0.04 0.04 0.04 0.04 0.04 0.063 0.028

W �m−1� Spectral width 0.0032 0.0032 0.0065 0.0097 0.013 0.0158 0.0031

s0 �m3� Eq. �17� 1234 1234 617 411 309 253 1280

Nondimensional parameters

� Wave steepness 0.16 0.16 0.16 0.16 0.16 0.25 0.11

W̃ Eq. �18� 0.5 0.5 1 1.5 2 1 1

BFI Benjamin–Feir index 1.4 1.4 0.7 0.47 0.35 0.7 0.7

K̃ Eq. �18� 1.9 1.9 1.9 1.9 1.9 0.8 4

�̃I Growth rate 0.46 0.46 0.41 0.3 0.14 0.22 0


 Eq. �15� 0.08 0.16 0.08 0.08 0.08 0.126 0.056
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IV. STABILITY DIAGRAM AND RECURRENT
SOLUTIONS

The evolution of the solution of Eq. �1� has been calcu-
lated numerically in Ref. 7 using the following nondimen-
sional variables

�̃ =
k0

2

�2�, ̃ = �k0�x −
1

2
� g

k0
t� ,

�̃ = ��2�gk0�t, r̃ = �k0r ,

where � is the steepness of the sea.
In these variables Eq. �1� reduces to

i
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−
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4

�2�̃

� ̃ � r̃
− �̃��̃�̃ + r̃/2,0� − �̃�̃ − r̃/2,0�� = 0. �11�

The values of �̃�̃ , r̃ , �̃� are calculated for different initial
conditions, defined as

��x,r,t = 0� = �h�r� + 
�1�x,r,t = 0� , �12�

where

�h�r� = �
−�

�

ei�k−ko�rS�k�dk �13�

and

�1�x,r,t� = R�r�cos�Kx� . �14�

For a sea-swell interaction �see details in Appendix A�, Eq.
�A7� reads

R�r� = �h� K

k0
cos�Kr/2� + i sin�Kr/2�� and 
 = 2alk0. �15�

K and k0 are the swell and sea wave numbers, respectively,
and the initial homogeneous correlation is

�̃h�r̃� =
1.133��

4
e−��r̃W̃�2/6.45�. �16�

The governing nondimensional parameters as defined in
Ref. 7 are

� = ask0 = �4s0Wk0 = o�1� , �17�

�̃I = �I/�2�gk0, K̃ = K/�k0, and W̃ = W/�k0, �18�

where �̃I is the nondimensional growth rate.
All seven cases of Table I are marked on the stability

diagram given in Fig. 1.

Cases E, B, and F are all for W̃=1 but for different K̃.
Case F falls in the stable zone and no freak waves, which
result from the swell-sea interaction, are expected for this
case. Cases E and B are in the unstable zone, where freak-
waves will emerge from the evolution. However, Stiassnie
et al.7 found that unstable cases outside the shaded zone will
produce simple recurrence, whereas those in the shaded zone
produce complex recurrence. The statistical treatment of
cases within the shaded zone is more complicated and is not
considered in this paper.

Cases A1, B, C, and D of Table I and Fig. 1 have been
chosen in order to assess the influence of the spectral width
on the probability of freak waves. These four cases have all

the same K̃ and 
. A comparison between cases A1 and A2

will enable us to assess the influence of 
, i.e., of the ampli-
tude of the swell, see Eq. �15�. One should note the simple

relation between our W̃ and the Benjamin–Feir index �BFI�
of Janssen:8 BFI=1 /�2W̃.

The numerical results for the values of �̃m��̃�, i.e., of the

maximum value of �̃�̃ ,0 , �̃�, taken for a chosen �̃ and for all

possible ̃, are shown in Fig. 2. Note that only one typical
cycle of the recurring evolution is drawn. The numerical ap-
proach is outlined in Appendix B.

Comparing case A2 to case A1, one can see that as the
swell amplitude becomes larger, the recurrence period short-
ens but the maximum value of �̃ remains similar. One can
also see that as the initial spectral width becomes smaller
�that is, larger growth rate and larger BFI� the maximum
values of �̃ get larger and the recurrence period shortens. The
nondimensional periods of the cycles drawn in Fig. 2 are 14,
17.5, 19.5, 26, and 52 for A2, A1, B, C, and D, respectively.

V. THE PROBABILITY DENSITY FUNCTION
OF �̃„�̃ ,0 , �̃…

In order to find pdf��̃� the following steps were taken:

First, 100 locations evenly distributed along the ̃ axis from 0

FIG. 1. Stability diagram: Isolines of the nondimensional growth rate �̃I for
a Gaussian spectrum. Ts=8 s �triangle�, Ts=10 s �circles�, and Ts=12 s
�square�.

FIG. 2. A typical cycle of the long-time recurring evolution of �̃m��̃� / �̃h�0�
for A2 ���, A1 ���, B ���, C ���, and D ���.
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to 2� / K̃ were taken. During one recurrence cycle, �̃ was
sampled at 100 evenly distributed sampling times, so that 104

�̃�̃ ,0 , �̃� values were used to establish pdf��̃�. The isolines
of �̃ / �̃h are plotted in Fig. 3 for the above mentioned five
different cases. In these plots the values were shifted on

the ̃ axis so that the maximum values are at ̃=0 and

̃=2� / K̃. The curves were also slightly smoothed.
Second, the 10 000 values were arranged from the low-

est to the highest and divided into 100 evenly spaced incre-
ments in �̃. The probability of each increment was calculated
as the number of elements within the increment divided by
10 000. Figure 4 presents the probability density function of
�̃ / �̃h by a bar diagram �to ease comparison, the widths of the
bins in all bar diagrams are equal� and the probability func-
tion �the probability to obtain a value smaller or equal to
�̃ / �̃h� by the solid line for the five different cases. From Figs.
3 and 4 one can see that for cases A1 and A2 many bins are
activated and that the number of active bins reduces when
the spectral width grows.

VI. THE PROBABILITY OF FREAK WAVES

The probability function of the wave height, Eq. �9�, is
calculated on the basis of the known values of pdf��̃� shown
in Fig. 4.

The values of the wave-height probabilities for an inho-
mogeneous ocean are compared with those of the homoge-
neous case given by Eq. �8�. In Fig. 5 one can see the freak-
wave probability values, i.e., the probability for waves with

Ĥ�2.85Hrms0�2Hs. The inset shows the probability func-
tion for the Rayleigh distribution, which corresponds to a
homogeneous sea, and the probability obtained from the cal-
culation made using Alber’s6 equation for case A2. As one

can see from Fig. 5 the probability up to Ĥ�1.4Hrms0 is
greater for the Rayleigh distribution, but after the intersec-
tion point the probability is greater for the results obtained
from Alber’s6 equation, the intersection values for cases A1,

B, C, and D are in the range Ĥ /Hrms0� �1.4,1.7�.
From the results given by Fig. 5 one can draw the fol-

lowing conclusions:

FIG. 3. Isolines of �̃�̃ ,0 , �̃� / �̃h�0�.
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• There is a strong effect of the spectral width W, which
together with the sea wave number and the sea ampli-
tude sets the growth rate, and can also be related to the
BFI. Case A1 gives 50 /10 000 waves higher than
2.85Hrms0�=2Hs�, as opposed to case D in which only
6 /10 000 are higher than 2.85Hrms0, which is closer to
the Rayleigh distribution �for which 3 /10 000 waves
are higher than 2Hs�.

• There is a weaker effect of the swell amplitude al,
which affects the size of the small inhomogeneous dis-
turbance 
 �see Eq. �15��. In case A2, 
 is double the
value of 
 in case A1 �0.16 compared to 0.08�. In case

A2 60 /10 000 waves are higher than 2.85Hrms0, com-
pared to 50 /10 000 in case A1.

• The probability of exceptionally high freak waves,
with wave heights higher than three times that of the
significant wave height, increases from the “almost
never” value of 10−8 for the Rayleigh distribution to
2 /10 000 for case B, 3 /10 000 for case A1, and
4 /10 000 for case A2. These values make the encoun-
ter of exceptionally high freak waves more likely.

Note that for non-narrow-banded spectra, albeit within
the linear theory approximation, Tayfun9 found that the prob-

FIG. 4. Probability density function
pdf��̃ / �̃h� and probability function
P��̃ / �̃h� as functions of �̃ / �̃h.

FIG. 5. The probability of freak waves �Ĥ /Hrms0

�2.85� for the Rayleigh distribution �—� and the prob-
ability obtained from Alber’s equation �Ref. 6�: case A2

���, case A1 ���, case B ���, case C ���, and case D
���. The inset shows the probability function for the
Rayleigh distribution �black line� and case A2 �gray
line�.
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ability for the very high waves is overpredicted by the Ray-
leigh distribution.

VII. DIRECT SIMULATION AND SUMMARY

In order to confirm the results for the probability of freak
waves, described in Sec. VI, we carried out “Monte Carlo”
simulations with solutions of the nonlinear Schrödinger
equations; for As, the complex wave envelopes of the sea �A
is defined in Eq. �3��:

i� �As

�t
+

1

2
� g

k0

�As

�x
� −

g1/2

8k0
3/2

�2As

�x2 =
g1/2k0

5/2

2
�As�2As. �19�

The numerical solution of Eq. �19� was carried out using the
split-step Fourier method used by Shemer et al.10 and by Lo
and Mei.11 The computation domain consisted of 512�s, and
an average over 2000 realizations was taken.

Case A2 of Table I was chosen for comparison. The
probability of freak waves, as well as the probability for
exceptionally high freak waves, as a function of time is pre-
sented in Fig. 6. The asymptotic probabilities for large times
of H�2Hs and H�3Hs from Fig. 6 are 120 /10 000 and
4 /10 000, compared to 60 /10 000 and 5 /10 000, which were
obtained from Alber’s6 equation, respectively. We consider
this to be a fair agreement in view of the difference described
below.

The initial sea that we have substituted into Alber’s6

equation is strictly homogeneous, and an additional inhomo-
geneous disturbance is required in order to obtain nontrivial
solutions. One could think about different physical mecha-
nisms that can induce the required inhomogeneity.

In the solution that used Alber’s6 equation, the activating
inhomogeneous disturbances are provided by bound waves,
which are generated through quadratic interaction of the sto-
chastic sea with a deterministic swell, as explained in Appen-
dix A. This is just one possible source of inhomogeneity. An
alternative source is the inevitably limited number of realiza-
tions in a Monte Carlo simulation.

Thus, it is not necessary to have long waves for the
inhomogeneity to arise. Indeed, the swell, as such, is not
involved in the 2000 solutions of the nonlinear Schrödinger
equation �19�, which were used for the Monte Carlo simula-
tion. However, using the 2000 random sets of initial

condition, one can calculate the two-point spatial correlation
��x ,r , t� at t=0, see Fig. 7. From Fig. 7, it is quite clear that
the ensemble of 2000 realizations fails to produce a homo-
geneous sea, for which � must be independent of x. The
matter of fact is that a closer observation of the fine structure
of the lines ���x ,r ,0��=const reveals length scales in x of the

order of about 10�s, which correspond to K̃�0.6. On the
stability diagram, see Fig. 1, these length scales would be
located on the horizontal line w̃=0.5 �dashed line in the fig-
ure�, well within the shaded complex recurrence zone.

Thus, it seems that the difference in the nature of the
initial inhomogeneous disturbances is the main reason for the
somewhat different results of both models.

To summarize we have the following:

• Alber’s6 equation was used to study the statistics of
freak waves in a unidirectional inhomogeneous sea.
The inhomogeneity arises due to the interaction of a
deterministic, long swell with a stochastic, short sea.

FIG. 6. Probability of freak waves as a
function of time from Monte Carlo
simulations with the nonlinear
Schrödinger equation for �a� H�2Hs

and �b� exceptionally freak waves H
�3Hs.

FIG. 7. Isolines of the modulus of the two-point spatial correlation of the
sea at t=0 and for case A2. The ensemble average was taken over 2000
realizations
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• The probability of freak waves increased up to 20
times �compared to the reference, Rayleigh distribu-
tion� as the spectral width of the sea decreases and the
amplitude of the swell increases. The probability for
exceptionally high freak waves was increased by a fac-
tor of about 30 000.

• The results were compared to those obtained by Monte
Carlo simulations with the nonlinear Schrödinger
equations.

• The more general and more common case, where the
wind-wave system and the swell propagate in different
directions, requires a much heavier numerical effort
and is left for a future study.
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APPENDIX A: THE INITIAL DISTURBANCE

Using the notation of Secs. 14.2 and 14.3 in Ref. 12 and

assuming the coexistence of a swell with a single mode B̃0
l

and a sea which consists of many modes B̃n
s :

�B̃�k,t� = �
n

B̃n
s
�k − kn

s� + B̃0
l 
�k − kl�; �A1�

One can use their Eqs. �14.3.1�, �14.3.3�, and �14.2.15� to obtain the following expression for the free-surface elevation:

��x,t� =
1

2�
���kl�

2g
�B̃0

l ei�klx−��kl�t� + c.c� +
1

2�
�

n
����kn
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2g
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sei�kn
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4�
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s��1/2���kl���kn
s�

g
	2 ��kn

s + kl�
��kl���kn

s�
B̃n

s B̃0
l ei��kn

s+kl�x−���kn
s �+��kl��t�

− ���kn
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��kl� 	1/2���kn
s − kl���kl�

g
	2 1

��kl�
ei��kn

s−kl�x−���kn
s �−��kl��t�B̃n

s�B̃0
l �� + c.c	� . �A2�

The above expression includes the free modes of the swell and the sea, as well as the bound modes of their mutual interaction.

Substituting Eq. �A2� into Eqs. �2� and �3�, in Sec. II, and assuming that the sea modes B̃n
s have random phases leads to

��x,r,0� = �
n

��kn
s�

2g�2 �B̃n
s �2ei�kn

s−ks�r�1 +
1

2�
���kl�

2g
�1/2

�kn
s + kl�B̃0

l eikl�x+r/2� −
1

2�
���kl�

2g
�1/2

�kn
s − kl��B̃0

l ��e−ikl�x+r/2�

+
1

2�
���kl�

2g
�1/2

�kn
s + kl��B̃0

l ��e−ikl�x−r/2� −
1

2�
���kl�

2g
�1/2

�kn
s − kl�B̃0

l eikl�x−r/2�	 . �A3�

From Eq. �14.5.5� in Ref. 12,

an =
1

�
�Bn���n

2g
�1/2

, al =
1

�
�Bl�� �l

2g
�1/2

, �A4�

and substituting Eq. �A4� and B0
l = �B0

l �ei�l into Eq. �A3� gives

��x,r,0� = �
n

an
2

2
ei�kn

s−ks�r�1 +
al

2
�ei�l�kn

seikl�x+r/2� + kleikl�x+r/2�

− kn
seikl�x−r/2� + kleikl�x−r/2�� + e−i�l�kn

se−ikl�x−r/2�

+ kle−ikl�x−r/2� − kn
se−ikl�x+r/2� + kle−ikl�x+r/2���� . �A5�

Using Eq. �4� and recalling the narrowness of the sea spec-
trum, which justifies replacing kn

s by ks in the curly brackets
of Eq. �A5�, gives

��x,r,0�

= �h�1 + 2alk
s cos�klx + �l�� kl

kscos�klr/2� + i sin�klr/2��	.

�A6�

Comparing Eq. �A6� with Eqs. �12� and �14� and recognizing
that kl=K, ks=k0 results in

R�r� = �h� K

k0
cos�Kr/2� + i sin�Kr/2�� ,

�A7�


 = 2alk0 = 2�l
k0

K
.

Equation �A7� is the final result of this appendix and it is
identical to Eq. �15�, in Sec. IV, of this paper.
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APPENDIX B: THE NUMERICAL APPROACH

Equation �11� was formulated as a finite difference
scheme, approximating the time derivative by a forward dif-

ference and the ̃ and r̃ derivatives by central differences:

i� �̃�n,j,�+1� − �̃�n,j,��

��̃
	 −

1

16�̃�r̃
��̃�n+1,j+1,�� − �̃�n−1,j+1,��

− ��̃�n+1,j−1,�� − �̃�n−1,j−1,����

− �̃�n,j,����̃�n+j�r̃/�2�̃�,0,�� − �̃�n−j�r̃/�2�̃�,0,��� = 0, �B1�

where the index n represents points along the ̃ axis, ̃=n�̃,
n=0,1 ,2 , . . . ,N, and N+1 is the number of points along this
axis. The subscript j represents points along the r̃ axis, where
r̃= j�r̃, j=0,1 ,2 , . . . ,M, and M +1 is the number of points
along the r̃ axis. � represents time steps where �̃=���̃,
�=0,1 ,2 , . . ..

The numerical time stepping scheme is formulated as
follows:

�̃�n,j,�+1� = �̃�n,j,�� −
i��̃

16�̃�r̃
��̃�n+1,j+1,�� − �̃�n−1,j+1,��

− ��̃�n+1,j−1,�� − �̃�n−1,j−1,���� − i��̃�̃�n,j,��

���̃�n+j�r̃/�2�̃�,0,�� − �̃�n−j�r̃/�2�̃�,0,��� . �B2�

We restrict ourselves to periodic solutions in ̃ so that on the

boundary ̃= ̃end, �̃�N,j,��= �̃�0,j,��.
The last term on the right-hand side of Eq. �B2� depends

on values of �̃ at ̃=n�̃+ j�r̃ /2 which can be larger than

̃end=N�̃. Again, the periodicity condition is used:

�̃�̃+2p� , r̃ , �̃�= �̃�̃ , r̃ , �̃�, where p=1,2 , . . ., or �̃�n+pN,j,��
= �̃�n,j,��.

The values of �̃ along r̃=0 depend on points outside the
domain 0� r̃� r̃end. Specifically, the second term on the
right-hand side of Eq. �B2� depends on �̃�n,−1,��. From the

definition of �̃, Eq. �2�, we see that �̃�̃ ,−r̃ , �̃�= �̃��̃ , r̃ , �̃�, so
one can calculate the value of �̃ along r̃=0 from the condi-
tion �̃�n,−1,��= �̃�n,1,l�

� .
Theoretically, the r̃ axis extends to infinity: however, for

practical reasons, the axis must be truncated. The boundary
condition that was used for large r̃ is given by

�̃�̃, r̃, �̃� = ��̃�̃ + r̃/2,0, �̃��̃�̃ − r̃/2,0, �̃�
sin�w̃r̃�

w̃r̃
. �B3�

For more details see Sec. 4.3 in Ref. 7.
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