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The study addresses the linear instability of narrow spectra homogeneous seas and
its subsequent evolution in time, subject to inhomogeneous disturbances. Specifically,
we study unidirectional spectra, where according to the kinetic equation no spectral
evolution is expected. In the region of instability, recurrent evolution is discovered.
This recurrence is the stochastic counterpart of the Fermi–Pasta–Ulam recurrence
obtained for the cubic Schrödinger equation.

1. Introduction
The nonlinear evolution in time (t) and space (x) of ocean-wave fields is usually

described by equations for the free-surface elevation η(x, t), or related quantities,
such as an amplitude spectrum given by its x to k Fourier transform. For deep
water, two frequently mentioned deterministic equations are: Zakharov’s equation for
broad-amplitude spectra and the cubic Schrödinger equation for narrow spectra (see
Zakharov 1968).

Randomness is introduced through the concept of ensemble averaging. The
ensemble average is defined as an average taken over randomly chosen initial phases
allocated to the various modes of a continuous spectrum, and is denoted by angle
brackets 〈 〉. Since 〈η〉 = 0, the next variable of interest is:

c(x, r, t) ≡
〈
η
(
x + 1

2
r, t

)
η
(
x − 1

2
r, t

)〉
. (1.1)

A wave field is called homogeneous if the above two-point correlation c, with spacing
r , is independent of x, i.e. c = c(r, t).

The most frequently used stochastic model, is Hasselmann’s (1962) kinetic equation.
The kinetic equation (and also Janssen’s (2003) non-resonant kinetic equation, as
well as Annenkov & Shrira (2006) extended kinetic equation), were derived for
homogeneous wave fields, and are written in terms of the r to k Fourier transform
of c(r, t), i.e. in terms of the energy spectrum S(k, t). A key step in the derivation of
the kinetic equation is the assumption that the phases of the components, however
close to each other in k space, remain uncorrelated to lowest order. Note that the
time scale of Hasselmann’s kinetic equation is proportional to ε−4, where ε is a small
wave-steepness.

A different approach designed for treating inhomogeneous wave fields, albeit with
narrow spectra, was suggested by Alber (1978) and used by him and others to
study the instability of homogeneous wave-field to inhomogeneous disturbances.
Alber’s findings are actually the stochastic counterpart of the well-known deterministic
Benjamin–Feir instability, obtained for the cubic Schrödinger equation. The growth
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rates of the inhomogeneous instabilities are proportional to ε2, reflecting the fact
that the time scale of Alber’s equation is proportional to ε−2. Although Alber does
not state it specifically, the choice of his initial small inhomogeneous disturbances
discloses a certain correlation between their phases and those of the homogeneous
base state.

From the cubic Schrödinger equation, it is known that the Benjamin–Feir instability,
does not lead to a permanent end state, but to an unsteady series of modulation
and demodulation cycles, called the Fermi–Pasta–Ulam recurrence phenomenon (see
Stiassnie & Kroszynski 1982).

The study of the stochastic counterpart of the Fermi–Pasta–Ulam recurrence is the
main goal of the present article. This goal is obtained by integrating Alber’s equation
numerically.

The only known attempt to obtain subsequent evolution for the solution of Alber’s
equation, is that of Janssen (1983). Janssen used an asymptotic method to solve
the problem near the threshold of instability and obtained a solution which is
characterized by an initial small overshoot followed by an oscillation around its time-
asymptotic value. In § 6, we show that our numerical calculation recovers Janssen’s
result, but that the behaviour at genuinely unstable points is profoundly different; for
the latter points, the deviations from the initial stage are substantial, and moreover
the results are of a recurrent nature.

The linear stability analysis is revisited in § 2. The physical interpretation of the
inhomogeneous disturbance is discussed in § 3. The numerical scheme for long-time
computations of Alber’s equation is given in § 4. The results are reported in § 5, and
discussed in § 6.

2. Linear stability analysis
2.1. Alber’s equation

Alber’s (1978) equation for narrow-banded random surface waves, on infinitely deep
water, and in one spatial dimension reads:

i

(
∂ρ

∂t
+

1

2

√
g

k0

∂ρ

∂x

)
− 1

4

√
g

k3
0

∂2ρ

∂r∂x
=

√
gk5

0ρ(x, r, t)

[
ρ

(
x +

r

2
, 0, t

)
− ρ

(
x − r

2
, 0, t

)]
,

(2.1)

where ρ(x, r, t) is the two-point space correlation function defined as:

ρ(x, r, t) =
〈
A

(
x + 1

2
r, t

)
A∗(x − 1

2
r, t

)〉
. (2.2)

The angle brackets denote the ensemble average, and the asterisk stands for the
complex conjugate.

In (2.2), A(x, t) is the complex envelope of the narrow-banded sea, (around k0),
related to the free-surface elevation η(x, t) through

2η(x, t) = A(x, t) exp(i(k0x −
√

gk0 t)) + ∗, (2.3)

where g is the acceleration due to gravity. In the above equations and elsewhere in
this paper, x is the horizontal coordinate and t is the time.

Alber’s equation (2.1) is based on the cubic Schrödinger equation, which requires
that the bandwidth should be of order εk0, where ε = 0(1) is a typical wave slope that
will be specified later.
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2.2. Correlation function for homogeneous seas

Following Kinsman (1965, p. 377), a homogeneous random ocean surface is given by
the stochastic integral:

2η(x, t) = exp(i(k0x −
√

gk0t))

∫ ∞

−∞
exp(i[(k − k0)x − (

√
gk −

√
gk0)t + θ(k)])

×
√

S(k) dk + ∗, (2.4)

where θ(k) is a random phase with uniform distribution in (−π, π], and S(k) is the
energy-spectrum.

From (2.3) and (2.4),

A(x, t) =

∫ ∞

−∞
exp(i[(k − k0)x − (

√
gk −

√
gk0)t + θ(k)])

√
S(k) dk. (2.5)

Substituting (2.5) into (2.2) gives

ρ(x, r, t) =

∫ ∞

−∞

∫ ∞

−∞

〈
exp

(
i

[
(k1 − k0)

(
x +

r

2

)
− (

√
gk1 −

√
gk0)t + θ1(k1)

])

· exp

(
−i

[
(k2 − k0)

(
x − r

2

)
− (

√
gk2 −

√
gk0)t + θ2(k2)

])〉
×

√
S(k1)S(k2) dk1 dk2. (2.6)

The only terms that remain after the averaging are those for which k2 = k1,

ρ(x, r, t) =

∫ ∞

−∞
exp

(
i

[(
k1 − k0

)(
x +

r

2

)

− (k1 − k0)

(
x − r

2

)
− (

√
gk1 −

√
gk0)t + (

√
gk1 −

√
gk0)t

])
(2.7)

S(k1) dk1 =

∫ ∞

−∞
exp(i(k − k0)r)S(k) dk ≡ ρh(r).

Thus, the correlation function for a homogeneous sea ρh, is independent of x, and is
a trivial solution of (2.1).

2.3. Instability of inhomogeneous disturbances

Considering a solution

ρ(x, r, t) = ρh(r) + δρ1(x, r, t), (2.8)

where δ is the dimensionless inhomogeneity parameter and ρ1(x, r, t) is an inhomo-
geneous disturbance. Here, we assume δ = o(1).

Substituting (2.8) into (2.1) and neglecting terms of order δ2,

i

(
∂ρ1

∂t
+

1

2

√
g

k0

∂ρ1

∂x

)
− 1

4

√
g

k3
0

∂2ρ1

∂x∂r

=

√
gk5

0ρh(r)

[
ρ1

(
x +

r

2
, 0, t

)
− ρ1

(
x − r

2
, 0, t

)]
. (2.9)

Assuming a disturbance of the form

ρ1(x, r, t) = R(r)

{
exp

(
i

[
K

(
x − 1

2

√
g

k0

t

)
− Ωt

])
+ ∗

}
, (2.10)
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where R(0) is real, K is the wavenumber of the disturbance and Ω is its frequency.
Note that to obtain instability, Im{Ω} must be positive.

Substituting (2.10) into (2.9) gives an ordinary differential equation for R(r),

dR

dr
+ γR = G(r), (2.11)

where

γ = 4i

√
k3

0

g

Ω

K
, G(r) =

4ik4
0

K
ρh(r)R(0) [exp(iKr/2) − exp(−iKr/2)]. (2.12a, b)

Assuming that R(∞) = 0, the solution of (2.11) is

R(r) =
4ik4

0

K
R(0) exp(−γ r)

∫ r

∞
ρh(r

′)[exp(ikr ′/2) − exp(−ikr ′/2)] exp(γ r ′) dr ′. (2.13)

Taking r =0 in (2.13) gives

1 =
4ik4

0

K

∫ 0

∞
ρh(r

′)[exp(ikr ′/2) − exp(−ikr ′/2)] exp(γ r ′) dr ′. (2.14)

Substituting (2.7) into (2.14) yields

1 =
4ik4

0

K

∫ ∞

−∞

∫ 0

∞
exp(i(k − k0)r

′)[exp(ikr ′/2) − exp(−ikr ′/2)] exp(γ r ′)S(k) dr ′ dk.

(2.15)
Integrating (2.15) over r ′, noting that Re{γ } < 0, gives

1 =
4ik4

0

K

∫ ∞

−∞

{
1

i(k − k0) + iK/2 + γ
− 1

i(k − k0) − iK/2 + γ

}
S(k) dk, (2.16)

or

1 = 4k4
0

∫ ∞

−∞

S(k) dk

[i(k − k0) + γ ]2 + K2/4
, (2.17)

which is the final result of this section. For given K and S(k), (2.17) serves to calculate
Ω (see 2.12(a)), and to determine conditions for instability and the actual growth
rates.

2.4. Three narrow spectra

Any further progress requires us to specify S(k). In our calculation, we have chosen
the following three spectra.

(i) A square spectrum

S = s0 for k0 − W < k < k0 + W, (2.18)

where W is the spectral width.
(ii) A Lorentz spectrum

S =
0.09 s0

[(k − k0)/W ]2 + 0.02
. (2.19)

(iii) A Gaussian spectrum

S = 1.45 s0 exp(−1.64[(k − k0)/W ]2). (2.20)
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Figure 1. Three narrow spectra.

The spectra (ii) and (iii) were normalized to fulfil the following constraints:∫ ∞

−∞
S(k) dk = 2 Ws0,

∫ k0+0.9W

k0−0.9W

S(k) dk = 1.8 Ws0. (2.21a, b)

Equation (2.21a) guarantees that all spectra have the same total energy, and (2.21b)
ensures that they have a comparable width. The three spectra are plotted in figure 1.

2.5. Growth-rate for the square spectrum

Substituting (2.18) into (2.17) and integrating over k:

1 =
8k4

0s0

iK

{
arctan

[
2

K
(γ + iW )

]
− arctan

[
2

K
(γ − iW )

]}
, (2.22)

which can be reduced to

γ 2 =
K2

4

[
4W

K
coth

(
K

8 s0k
4
0

)
− 1

]
− W 2. (2.23)

The right-hand side of (2.23) is real. A necessary condition for instability is Re{γ } < 0,
so that Im{γ } and Re{Ω} must vanish. Applying (2.12a), the growth rate is found to
be

ΩI ≡ Im {Ω} =
K

4

√
g

k3
0

{
K2

4

[
4W

K
coth

(
K

8 s0k
4
0

)
− 1

]
− W 2

}
. (2.24)

Defining the small steepness parameter

ε =
√

4s0 W k0 = o (1), (2.25)

and the non-dimensional variables

Ω̃I = ΩI/ε
2
√

gk0, K̃ = K/ε k0, W̃ = W/ε k0; (2.26a–c)

(2.24) is rewritten as:

Ω̃I =
K̃

4

√
K̃ W̃ coth (K̃ W̃/2) − K̃2/4 − W̃ 2. (2.27)



250 M. Stiassnie, A. Regev and Y. Agnon

2.6. Growth rate for the Lorentz and Gaussian spectra

Starting from (2.19) and following a similar procedure to that outlined in the previous
section, we obtain for a Lorenz spectrum

Ω̃I =
K̃

4

(√
2 − K̃2/4 − 0.1425W̃

)
. (2.28)

The result for the Gaussian spectrum, (2.20), can only be given in an implicit form:

0.11 W̃ K̃ = Im

{
W

(
0.64 K̃

W̃
+

5.14 i Ω̃I

W̃ K̃

)}
. (2.29)

The function W(z) of the complex variable z, is defined in Abramowitz & Stegun
(1972, eq. (7.1.3), p. 297); it is related to the complementary error function through

W (z) = e−z2

erfc(−i z). (2.30)

2.7. Results of linear-stability analysis

The non-dimensional growth rate Ω̃I , see (2.26a), for the three different spectra is
shown in figure 2.

Figure 2 gives nine solid isolines for each spectrum, for which Ω̃I = 0.05, 0.1, 0.15,

. . . , 0.45. The broken lines represent the marginal stability cases, i.e. Ω̃I = 0. Note
that Ω̃I = 0 also on K̃ = 0. For all three spectra, the values of Ω̃I at W̃ = 0, i.e. for
non-random waves, are identical and reach a maximum Ω̃I = 0.5 at K̃ =2, and have
Ω̃I = 0 at K̃ =2

√
2. For the Lorentz and Gaussian spectra, the regions of instability

are bounded, whereas that of the square spectrum extends to infinity, albeit with
ever decreasing growth rates, along the line W̃ = 0.5 K̃ . This singular behaviour is
attributed to the abrupt structure of the square spectrum. Despite the very different
structure of the square and Gaussian spectra, the isolines Ω̃I = 0.45, 0.40, 0.35 are
surprisingly similar (see figure 3). This similarity becomes even more profound when
compared to behaviour of the same isolines for the Lorentz spectrum, also given
in figure 3. Note that the case of vanishing spectral width, i.e. W = 0, corresponds
to the deterministic problem, for which the well-known Benjamin–Feir instability is
recovered.

3. Interpretation of the initial disturbance
3.1. Spectral interpretation of the initial conditions

In (2.10), the decay rate R(r) is introduced, and there are no limitations on R except
that R(0) is real and R(∞) = 0. In this section, the spectral interpretation of the
inhomogeneous disturbance will be derived.

The influence of the small initial disturbance on the homogeneous spectrum can be
found by dividing the spectrum in a similar way to (2.8):

S(x, k) = Sh(k) + δ S1(x, k). (3.1)

To find an interpretation for S1 we start with (2.6); by replacing S(k) with S(k, x), we
obtain:

ρ(x, r, t) =

∫ ∞

−∞
exp(i(k − k0)r)

√
S
(
k, x + 1

2
r, t

)
S
(
k, x − 1

2
r, t

)
dk. (3.2)

Note that (3.2) falls into line with equations (46)–(49) of Crawford, Saffman & Yuen
(1980).
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Figure 2. Isolines of the non-dimensional growth-rate Ω̃I for three spectra: (a) square
spectrum; (b) Lorentz spectrum; (c) Gaussian spectrum. Dots refer to the cases for which
long-time evolution is studied.
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Figure 3. Three isolines of the growth rate Ω̃I = 0.35, 0.40, 0.45, for three different spectra:
(a) ——, square spectrum; (b) – – –, Lorentz spectra; (c) · · ·, Gaussian spectra.

Using (3.1) and approximating the value under the square root in (3.2) up to order
δ:√

S
(
k, x + 1

2
r, t

)
S
(
k, x − 1

2
r, t

)
= Sh(k, t) + 1

2
δ
[
S1

(
k, x + 1

2
r, t

)
+S1

(
k, x − 1

2
r, t

)]
+o(δ2).

(3.3)
Substituting (3.3) into (3.2)

ρ(x, r, t) =

∫ ∞

−∞
exp(i(k − k0)r)

{
Sh(k, t) + 1

2
δ
[
S1

(
k, x + 1

2
r, t

)
+ S1

(
k, x − 1

2
r
)
, t

]}
dk.

(3.4)
Equation (2.10) at t = 0 gives,

ρ1(x, r) = 2R(r) cos(Kx). (3.5)

Similarly, for the spectral disturbance at t = 0, we assume,

S1(x, k) = 2s(k) cos(Kx). (3.6)

Substituting (3.6) into (3.4) using (3.5) and (2.7),

2R(r) =

∫ ∞

−∞
s(k) [exp(i(k − k0 + K/2)r) + exp(i(k − k0 − K/2)r)] dk. (3.7)

Taking the r to χ Fourier transform of (3.7),

2

∫ ∞

−∞
R(r) exp(−iχr) dr =

∫ ∞

−∞

∫ ∞

−∞
s(k) [exp(i(k − k0 + K/2 − χ)r)

+ exp(i(k − k0 − K/2 − χ)r)] dr dk. (3.8)

Integrating the right-hand side over r:

1

π

∫ ∞

−∞
R(r) exp(−iχr) dr =

∫ ∞

−∞
s(k)

[
δ
(
k − k0 + 1

2
K − χ

)
+ δ

(
k − k0 − 1

2
K − χ

)]
dk

= s
(
k0 + χ − 1

2
K

)
+ s

(
k0 + χ + 1

2
K

)
. (3.9)
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Neglecting terms of order K2, give an equation for s(k):

s(k) =
1

2π

∫ ∞

−∞
R(r) exp(−i(k − k0)r) dr. (3.10)

Equations (3.1), (3.6) and (3.10) give the initial spectrum.
Note the similarities between the pair (ρh(r), Sh(k)) and the pair (R(r), s(k)) as

demonstrated by their interrelations:

ρh(r) =

∫ ∞

−∞
Sh(k) exp(i(k − k0)r) dk, (3.11a)

Sh(k) =
1

2π

∫ ∞

−∞
ρh(r) exp(−i(k − k0)r) dr, (3.11b)

R(r) =

∫ ∞

−∞
s(k) exp(i(k − k0)r) dk, (3.12a)

s(k) =
1

2π

∫ ∞

−∞
R(r) exp(−i(k − k0)r) dr, (3.12b)

3.2. Connection to the initial surface elevation η

To calculate the initial surface elevation η, we start from (2.4), (3.1) and (3.6) at t = 0:

2η(x) =

∫ ∞

−∞
exp(i[kx + θ(k)])

√
S(k, x) dk + ∗

=

∫ ∞

−∞
exp(i[kx + θ(k)])

√
Sh(k) + 2δs(k) cos(Kx) dk + ∗. (3.13)

To first order in δ, (3.13) can be written:

2η =

⎡
⎣∫ ∞

−∞
exp(i(kx + θ(k)))

√
Sh dk + cos(Kx)

∫ ∞

−∞
exp(i[kx + θ(k)])

√
δ2s2

Sh

dk

⎤
⎦ + ∗,

(3.14)
which shows that the phase θ(k), of the inhomogeneous disturbance is not free, and
is related to the phase of the homogeneous spectrum.

Equation (3.14) can also be written as:

2η =

∫ ∞

−∞

{
exp(i(kx + θ(k)))

√
Sh(k) + 1

2
exp(i((k + K)x + θ(k)))

√
δ2s2(k)

Sh(k)

+ 1
2
exp(i((k − K)x + θ(k)))

√
δ2s2(k)

Sh(k)

}
√

dk + ∗. (3.15)

A shift of the integration variables in the last two terms on the right-hand side gives:

2η =

∫ ∞

−∞

{
exp(i(kx + θ(k)))

√
Sh(k) + 1

2
exp(i(kx + θ(k − K)))

√
δ2s2(k − K)

Sh(k − K)

+ 1
2
exp(i(kx + θ(k + K)))

√
δ2s2(k + K)

Sh(k + K)

}
√

dk + ∗. (3.16)

From (3.16), we can see that the phases of the right and left disturbances are identical
to those of the homogeneous spectrum, which are random, see also figure 4.
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Figure 4. Schematic description of the main homogeneous spectrum and the inhomogeneous
disturbance (here Sh(k) and s(k) are both Gaussian). As an example, the phases at (aR, bR, cR)
and at (aL, bL, cL) are the same as at (a, b, c), respectively.

4. Numerical solution of Alber’s equation
4.1. Numerical scheme

Albers equation (2.1), rewritten in terms of the following non-dimensional and
stretched variables:

ρ̃ =
k2

0

ε2
ρ, ξ̃ = εk0

(
x − 1

2

√
g

k0

t

)
, τ̃ = (ε2

√
gk0)t, r̃ = εk0r,

reads:

i
∂ρ̃

∂τ̃
+ 2λ

∂2ρ̃

∂ξ̃∂r̃
− 2νρ̃

[
ρ̃

(
ξ̃ + 1

2
r̃ , 0

)
− ρ̃

(
ξ̃ − 1

2
r̃ , 0

)]
= 0, (4.1)

where, ν = 1/2 and λ= −1/8.
Formulating (4.1) as a finite-difference scheme, approximating the time derivative

by a forward difference, and the ξ̃ and r̃ derivatives by central differences:

i

(
ρ̃(n,j,+1) − ρ̃(n,j,)

�τ̃

)
+

2λ

4�ξ̃�r̃

(
ρ̃(n+1,j+1,) − ρ̃(n−1,j+1,) −

(
ρ̃(n+1,j−1,) − ρ̃(n−1,j−1,)

))
− 2νρ̃(n,j,)[ρ̃(n+j�r̃/(2�ξ̃ ),0,) − ρ̃(n−j�r̃/(2�ξ̃ ),0,)] = 0, (4.2)

where the index n represents points along the ξ̃ axis, ξ̃ = n�ξ̃, n= 0, 1, 2, . . . , N; and
N + 1 is the number of points along this axis. The subscript j represents points along
the r̃ axis, where r̃ = j�r̃ , j = 0, 1, 2, . . . , M; and M +1 is the number of points along
the r̃ axis.  represents time steps where τ̃ = �τ̃ ,  = 0, 1, 2, . . . .

A schematic description of the domain is shown in figure 5.
The numerical time-stepping scheme is formulated as follows:

ρ̃(n,j,+1) = ρ̃(n,j,)+
iλ�τ̃

2�ξ̃�r̃

(
ρ̃(n+1,j+1,) − ρ̃(n−1,j+1,) −

(
ρ̃(n+1,j−1,) − ρ̃(n−1,j−1,)

))
− 2i�τ̃νρ̃(n,j,)[ρ̃(n+j�r̃/(2�ξ̃ ),0,) − ρ̃(n−j�r̃/(2�ξ̃ ),0,)]. (4.3)

After several attempts, the following values were taken for the differential steps:
�ξ̃ = π/100, �r̃ = π/40, and �τ̃ = 2.5 × 10−5. Taking smaller values did not have a
significant effect.

4.2. Periodicity in ξ̃

We restrict ourselves to periodic solutions in ξ̃ so that on the boundary ξ̃ = ξ̃end,
ρ̃(N,j,) = ρ̃(0,j,).
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Figure 5. Schematic description of the numerical domain.

The last term on the right-hand side of (4.3) depends on values of ρ̃ at
ξ̃ = (n�ξ̃ + j�r̃/2) which can be larger then ξ̃end = N�ξ̃ . Again, the periodicity
condition is used: ρ̃(ξ̃ + 2pπ, r̃, τ̃ ) = ρ̃(ξ̃ , r̃, τ̃ ), where p = 1, 2, . . . , or ρ̃(n+pN,j,) =
ρ̃(n,j,).

The values of ρ̃ along r̃ = 0, depend on points outside the domain 0 � r̃ � r̃end.
Specifically, the second term on the right-hand side of (4.3) depends on ρ̃(n,−1,). From
the definition of ρ̃, (2.2), we see that ρ̃(ξ̃ , −r̃ , τ̃ ) = ρ̃∗(ξ̃ , r̃, τ̃ ), so we can calculate the
value of ρ̃ along r̃ = 0, from the condition: ρ̃(n,−1,) = ρ̃∗

(n,1,).

4.3. Condition at large r̃

Theoretically, the r̃ axis extends to infinity, however for practical reasons, the axis
must be truncated. After several attempts, the following analysis led to the boundary
condition that was used for large r̃ . We start with (3.2), approximating S(k, x) by a
square spectrum in (k − k0) ∈ (−w, w), and integrating, leads to:

ρ(x, r, t) = 2
√

S
(
x + 1

2
r, t

)
S
(
x − 1

2
r, t

) sin(wr)

r
. (4.4)

For r = 0: ρ(x, 0, t) = 2S(x, t)w, thus S(x, t) = ρ(x, 0, t)/2w; substituting back into
(4.4), and switching to dimensionless quantities:

ρ̃(ξ̃ , r̃, τ̃ ) =
√

ρ̃
(
ξ̃ + 1

2
r̃ , 0, τ̃

)
ρ̃
(
ξ̃ − 1

2
r̃ , 0, τ̃

)sin(w̃r̃)

w̃r̃
, (4.5)

which is the boundary condition used at large r̃ .
The influence of the extent of the r̃ domain was checked for several values:

r̃end = 10ξ̃end, 30ξ̃end and 50ξ̃end. The effect of this closure is shown in figure 6, where
the maximum value of ρ̃(r̃ = 0) is presented as a function of the non-dimensional time,
τ̃ . It can be seen that all three lines are indistinguishable up to τ̃ = 17.5, (more then
300 wave periods); whereas the lines for the two larger domains overlap throughout
the computation. The value of �r̃ is kept constant in all cases, so the value of M is
400, 1200 and 2000, according to the increasing size of the domain.

For the case r̃end =30ξ̃end and r̃end = 50ξ̃end, the value ρ̃max(r̃ = 0) remained at
ξ̃ = 0, ξ̃end throughout the computation (i.e. for τ̃ < 35). This was also the case for
r̃end = 10ξ̃end, but only for τ̃ < 17.5. Since there was no difference between r̃end = 30ξ̃end

and r̃end = 50ξ̃end, all the simulations presented in the sequel are with r̃end = 30ξ̃end.
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Figure 6. The influence of the extent of the r̃ domain on the maximum value of ρ̃ at r̃ = 0
as a function of non-dimensional time τ̃ , for: , r̃end =10ξ̃end; , r̃ = 30ξ̃end; �, r̃ = 50ξ̃end.
These calculations are for a homogenous Gaussian spectrum and an inhomogeneous Gaussian
disturbance with K̃ =2, W̃ = 1, δ = 0.1.

4.4. Invariants of motion

In Janssen (1983), we find that the solution to our problem satisfies certain
conservation laws, and he continues to specify the first three of them. The same
invariants are mentioned in Janssen (2003). Note that the existence of more than
three invariants could serve as an indicator to the integrability of Alber’s equation.
The first invariant which relates to the total energy is:

I1 =

∫ 2π/K

0

ρ(x, 0, t) dx. (4.6)

The relative deviation of I1 at all times from its value at t = 0 did not exceeded 10−7

throughout the calculations.
The second invariant which depends on values along r is:

I2 =

∫ 2π/K

0

∫ ∞

−∞
κS ′ dx dκ, (4.7)

where:

S ′(x, κ, t) =

∫ ∞

−∞
ρ(x, r, t)eiκr dr. (4.8)

Since ρ(t = 0) is real and symmetric in r; I2(t = 0) = 0. Thus, we cannot compare
the values of I2 at all times to the initial value. However, an additional justification
for using r̃end = 30ξ̃end, rather than r̃end = 10ξ̃end or r̃end = 50ξ̃end, can be achieved by
comparing I2 for r̃end =10ξ̃end, r̃end = 30ξ̃end, and r̃end =50ξ̃end. Figure 7 shows the value
of I2 (in logarithmic scale) as a function of dimensionless time τ̃ . It can be seen that
the values of I2 for the r̃end = 30ξ̃end case are three orders of magnitude smaller then
the ones for r̃end = 10ξ̃end, and overlap the one for r̃end = 50ξ̃end.

The third invariant which depends both on the values along r = 0, through its first
term, and the values along the r axis, through its second term, is:

I3 =

∫ 2π/K

0

ρ2(x, 0, t) dx − 1

4

∫ 2π/K

0

∫ ∞

−∞
κ2S ′ dx dκ. (4.9)

The relative deviation of I3 at all times from its value at t = 0 did not exceeded 2%
throughout all calculated evolutions.
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Figure 7. The influence of the extent of the r domain on the invariant I2 as a function of
the non-dimensional time τ̃ , for: , r̃end = 10ξ̃end; , r̃ =30ξ̃end; �, r̃ = 50ξ̃end. Same case as
figure 6.

5. Results of the numerical simulations
5.1. Description of the initial conditions

In order to apply the numerical scheme given in the previous section, the initial value
of ρ̃ must be given. These initial conditions are set by (2.8) and by (2.10). It can be
seen that there are several degrees of freedom. For example, the initial homogeneous
distribution of ρ̃h depends only on the initial spectrum (3.11a), which can be a square
spectrum (2.18), a Lorentz spectrum (2.19), or a Gaussian spectrum (2.20). For these
spectra we obtain, respectively:

ρ̃h(r̃ , τ̃ = 0) =
sin(W̃ r̃)

2W̃ r̃
, (5.1)

ρ̃h(r̃ , τ̃ = 0) =
0.9π

4
√

2
exp(−0.1r̃W̃

√
2), (5.2)

ρ̃h(r̃ , τ̃ = 0) =
1.133

√
π

4
exp(−((r̃W̃ )2/6.45)). (5.3)

These correlation functions depend on one free parameter W̃ .
From (2.10), we can see that the value of the inhomogeneous disturbance wave

number K̃ , and the inhomogeneity parameter δ are also free quantities. The decay
rate R̃(r̃) that appears in (2.8) is also free; however one could choose the initial
inhomogeneous spectral disturbance, and then use (3.12a) to calculate R̃(r̃).

The influence of various initial conditions will be discussed in this section. The
different cases studied are summarized in table 1 and marked by dots in figures 2, 15
and 16.

5.2. Reference case (A1)

The chosen reference case is unstable, its initial homogenous and inhomogeneous
spectra are Gaussian with W̃ = 1.0. K̃ = 2.0, and the small inhomogeneous parameter
δ = 0.1.

In figure 8, the value of ρ̃(ξ̃ , r̃ =0), which is a representative of the energy
distribution, is presented at four different times, τ̃ = 0, 8.25, 16.25, 24.5; which, as
can be seen from figure 6, correspond to the initial value, the first peak, the next
lowest point, and the next peak, respectively. As we can see from figure 8, the
distribution of the energy changes from a nearly even distribution at τ̃ = 0, to the
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Initial homogeneous Inhomogeneous disturbance
Case δ K̃ W̃ Ω̃I spectrum Sh spectrum s See figure

A1 0.1 2.0 1.0 0.405 Gaussian Gaussian 2
A2 0.1 2.0 1.0 0.425 Lorentz Lorentz 2
A3 0.1 2.0 1.0 0.4 Square Square 2
A4 0.1 2.0 1.0 0.405 Gaussian Square Width = 0.1W̃ 2
A5 1 2.0 1.0 0.405 Gaussian Square Width = 0.1W̃ 2
A6 10 2.0 1.0 0.405 Gaussian Square Width = 0.01W̃ 2
B 0.1 4.0 1.0 0 Gaussian Gaussian 2
C 0.1 2.0 2.0 0 Gaussian Gaussian 2
D 0.1 2.0 0.5 0.47 Gaussian Gaussian 2
E1 0.1 1.0 0.5 0.31 Gaussian Square Width = 0.1W̃ 16
E2 0.1 1.4 0.5 0.406 Gaussian Square Width = 0.1W̃ 16
P1 0.1 2.0 7.017 0+ Lorentz Square Width = 0.1W̃ 15
P2 0.1 2.0 7.5 0 Lorentz Square Width = 0.1W̃ 15
P3 0.1 2.0 6.5 0.074 Lorentz Square Width = 0.1W̃ 15

Table 1. Summary of parameters chosen for the various simulations.
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ξ
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Figure 8. The value of ρ̃ as a function of ξ̃ , at r̃ = 0 for different times: , τ̃ = 0;
, τ̃ = 8.25; , τ̃ = 16.25; �, τ̃ = 24.5. case A1.

case where most of the energy is concentrated at the two ends of the region at
τ̃ = 8.25, and back to (almost) the initial distribution of ρ̃ at τ̃ = 16.25 (for τ̃ =24.5,
the picture returns to that of τ̃ = 8.25). In figure 9(a), the real part of ρ̃ as a function
of r̃ at ξ̃ = ξ̃end/2, is plotted as a function of r̃/ξ̃end for the same times as appear
in figure 8. It can be seen that the values of the real part of ρ̃ are nearly identical
for τ̃ = 0, τ̃ = 16.25, and also the values at τ̃ = 8.25 and τ̃ = 24.5 are the same. In
figure 9(b), the imaginary part of ρ̃ at the same cross-section is plotted, recurrence
is less evident. Note that the magnitude of the real part is ten thousand times larger
than the magnitude of the imaginary part.

5.3. The influence of the initial linear growth rate on the long-time evolution

In figure 10, the long-time evolution of ρ̃(0, 0, τ̃ )/ρ̃h(0) is presented for the cases
A1, B, C, D (see figure 2c). In all of these cases, the starting homogeneous, and the
inhomogeneuos disturbance spectra were Gaussian, and the inhomogeneity parameter
δ, was 0.1. Two of the cases (D, A1) are in the unstable region, whereas the other two
cases (C, B) are in the stable region. The initial value is 1.1 in all cases. In all cases,
the value of ρ̃(0, 0, τ̃ ) (the maximum value at r̃ = 0) does not go below the initial
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Figure 9. The values of (a) the real part of ρ̃ and (b) the imaginary part as a function of
r̃/ξ̃end, at the cross-section ξ̃ = ξ̃end/2, for different times. , τ̃ = 0; , τ̃ = 8.25; , τ̃ = 16.25;

, τ̃ =24.5. case A1.

homogeneous value. It can be clearly seen from figure 10 that the value of ρ̃(0, 0, τ̃ )
increases to 5.8 times the initial homogenous value for case D, which is the most
unstable case treated here, with a growth rate of 0.47. In case A1, which is unstable
and its growth rate is 0.405, this value increases to 4.5 times the initial value. For the
third and fourth cases that appear in figure 10, the corresponding points in figure 2c

are in the stable region. Case C which has the same K̃ as case A1, but W̃ is 3 times
larger, initially increases to 1.25 of the initial homogeneous value, and oscillates with
decreasing value to the initial homogeneous value. The fourth case, B, in which the
spectrum has the same W̃ as case A1, but the wavenumber of the disturbance K̃ is
doubled, decreases monotonically to the initial homogeneous value.

5.4. Influence of the shape of the initial spectrum

Figure 11 illustrates the long-time evolution of ρ̃(0, 0, τ̃ )/ρ̃h(0) for the three different
initial homogenous spectra Sh(k), described in § 2, when the small inhomogeneous
disturbance spectrum s(k) has the same structure as the homogeneous one, and the
inhomogeneity parameter is δ = 0.1. These cases are marked as A1, A2, and A3 in
figure 2. Figure 11 demonstrates the difference between the Gaussian spectrum, the
square spectrum and the Lorentz spectrum. As we can see, the maximal value of
ρ̃ for the Lorentz profile is greater than those for the square spectrum and for the
Gaussian spectrum.
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Figure 10. The value of ρ̃(0, 0, τ̃ )/ρ̃h(0) as a function of time, for four different initial
growth rates, cases (a) D, (b) A1, (c) C and (d) B of figure 2(c) and table 1.

We can see from table 1 that indeed its growth rate is also greater, for the same
initial W̃ and K̃ . Besides the maximal value, the differences are relatively small, and
in particular, the period of the recurrence for the three spectra is similar.

5.5. Influence of the shape of the inhomogeneous disturbance

The influence of the shape of the inhomogeneous disturbance is checked for four
different cases.

(i) The reference case with Gaussian homogenous and inhomogenuos disturbance
spectra (case A1).

(ii) Gaussian homogenous spectrum with a small square inhomogenuos disturbance,
δ =0.1, and the width of the spectrum s(k) is 10% of the width of Sh(k), as shown
schematically in figure 12 (case A4).

(iii) Case A5 in which the width of the inhomogeneous disturbance spectrum is the
same as in case A4, but δ = 1.0.
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Figure 11. The values of ρ̃(0, 0, τ̃ )/ρ̃h(0) as a function of time for three different initial
spectra: , square (A1); �, Gaussian (A3); , Lorentz (A2).
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Figure 12. Schematic description of the initial homogenous spectrum and the
inhomogeneous disturbances, , case A4; , case A5; , case A6.

(iv) Case A6 for which the width of the disturbance is 0.01W̃ but δ = 10, so that
the total area under the disturbance spectra is the same as in case A5.

In figure 13, the value of ρ̃(0, 0, τ̃ )/ρ̃h(0) is shown. It can be seen that although
the inhomogenuos disturbance is different from case to case the maximum value of
ρ̃(0, 0, τ̃ )/ρ̃h(0) is the same, and seems to depend only on the initial homogenous width
W̃ , and the disturbance wavenumber K̃ . However, owing to the weak disturbance
in case A4 the period of recurrence is much larger, as was shown by Stiassnie &
Kroszynski (1982) for the deterministic problem. Despite the difference in the
disturbance width between cases A5 and A6, the values of ρ̃(0, 0, τ̃ )/ρ̃h(0) are nearly
identical, probably because the energy of the disturbance is the same in both cases.

6. Discussion
Alber (1978) formulated an equation which is appropriate for the study of random

inhomogeneous wave fields with narrow spectra. This equation, now known as
Alber’s equation, enabled him to discover the stochastic parallel to the Benjamin–Feir
instability. In this paper, we have shown by numerical computations that a stochastic
parallel to the Fermi–Pasta–Ulam recurrence also exists.
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Figure 13. The values of ρ̃(0, 0, τ̃ )/ρ̃h(0) as a function of time, for four different initial
inhomogeneous disturbance spectra: ×, Case A1; , Case A4; , Case A5; �, Case A6.
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Figure 14. The value of ρ̃(0, 0, τ̃ )/ρ̃h(0) as a function of time for three cases near the
threshold of instability. , P1; , P2; � �, P3.

As mentioned in § 1, the only known attempt to obtain subsequent evolution for
the solution of Alber’s equation, is that of Janssen (1983). Janssen used an asymptotic
method to solve the problem near the threshold of instability and obtained a solution
which is characterized by an initial small overshoot followed by an oscillation around
its time-asymptotic value. In figure 14 we present results of the behaviour of our
numerical solution near and at the threshold of instability for the case of an initial
Lorentz spectrum with a small square disturbance, for K̃ =2.0 and W̃ = 6.5, 7.017
and 7.5. These three cases are marked in figure 15 as P3, P1 and P2, respectively. The
results in figure 14 for the cases P1 and the P2 are similar to what one would expect
from Janssen’s description of his asymptotic approximation. Note that the result for
P3 is recurring with a rather long recurrence-period (the period is approaching infinity
as we approach the marginal stability line from below).

Note that the numerical recurrence demonstrated by our results finds some support
in Janssen (1983). He defines W (x, p, t), (given by the r to p Fourier-transform of
ρ(x, r, t)) and obtains a transport equation for W , (his equation (11)). He observed that
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Figure 15. Three cases near the marginal-stability curve, see table 1.
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Figure 16. The distinction between cases of simple and complex recurrence.

this transport equation turns out to be invariant under the transformation t → −t .
p → −p, indicating, in our opinion, that the energy transfer (owing to the spatial
inhomogeneities) is possibly reversible. However, it turns out that the above condition
is probably necessary, but not always sufficient. To demonstrate this we have chosen
cases for which 2K̃ are also within the unstable region, see points E1 and E2 in
figure 16. This property is shared by all points within the shaded zone in figure 16.
From figure 17, we can see that the graphs for cases E1, E2 are very different from
that of A4, they are not recurring. The growth rate of A4 is equal to that of E2 which
is larger than that of E1; however, the value of ρ̃max is larger for E2 than for A4, and
largest for E1. (ρ̃max is the maximum value that ρ̃(ξ̃ , 0, τ̃ ) obtains for a fixed τ̃ , and
ξ̃ ∈ (0, ξ̃end), for complex recurrence the maximum value is moving and does not stay
at ξ̃ = 0 any more.) This could be explained from the values of the growth rates of
2K̃ disturbances, which are 0.48, 0.23 and 0 for cases E1, E2 and A4, respectively. We
call this type of behaviour ‘complex recurrence’, adopting the terminology of Yuen &
Ferguson (1978) who have obtained analogous results for the Schrödinger equation.

We must stress that in the present study the initial disturbance spectra are
profoundly inhomogeneous, through their phase relation to the homogenous
spectrum, in contrast to previous studies for which all initial phases were independent
and randomly chosen.
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Figure 17. The value of ρ̃max/ρ̃h(0) as a function of time for two cases in the complex
recurrence zone, E1 and E2, and a case in the simple recurrence zone A4, see table 1. , E1;

, E2; , A4.

The question about the possible manifestation of such inhomogeneous disturbances
in nature is crucial for the physical feasibility, not only of the newly calculated
evolutions, but also for Alber’s (1978) linear stability analysis.

One possible mechanism to generate such disturbances is related to sea-swell
interaction, for which the coexistence of a narrow-banded random sea and of a
monochromatic swell of much larger wavelength, is assumed.

The superharmonics and subharmonics which are generated by their interaction
(which are rather close to free waves), can probably serve as the inhomogeneous
disturbances, very similar in nature to those described in § 3.

Janssen (2003) applied a Monte Carlo approach to a naive discretization of
Zakhaov’s equation, using random initial phases, and obtained an irreversible
widening of the spectrum. Similar results were also found by Dysthe et al. (2003)
who have used the modified Schrödinger equation with random initial phases. It
seems plausible that recurrence could be recovered by their approaches, provided that
appropriate initial phase-relations are used. The overall averaged spectrum calculated
from our computations resembles the irreversible Monte Carlo results. This overall
spectrum is

¯̄S(k) =
1

T

∫ T

0

S̄(k, t) dt, (6.1)

where T denotes the recurrence time, and S̄(k, t) is the space-averaged spectrum:

S̄(k, t) =
K

2π

∫ 2π/K

0

S(k, x, t) dx. (6.2)

S(k, x, t) in (6.2) is inspired by (47) to (50) of Crawford et al. (1980), and given by

S(k, x, t) =
1

2π

∫ ∞

−∞
ρ(x, r, t) exp(−i(k − k0)r) dr. (6.3)

In figure 18(a) we give ¯̄S(k)/Sh(0) and compare it to Sh(k)/Sh(0) for the case A1.
In figure 18(b) we show S̄(k, t)/Sh(0) at t = 0, t = T/4, t = T/2. The curve at T = T/2

demonstrates an almost equal partition of the energy between the base spectrum and

the disturbances. The area under the graph of ¯̄S(k)/Sh(0) in figure 18(a) is 0.6% larger
than that under S̄(k, t)/Sh(0) at t = 0.

Alber’s original equation is not restricted to unidirectional cases, and we believe
that similar results to ours will be found for two-dimensional narrow spectra, in the
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Figure 18. (a) The overall averaged spectrum , ¯̄S(k)/Sh(0); compared to , Sh(k)/Sh(0).
(b) The spatial averaged spectra , S̄(k, t)/Sh(0) for t = 0; � �, t = T/4; , t = T/2.

future. The extension to broad spectra is a much more complicated issue, and it still
awaits the development of an appropriate model equation. In this respect, we should
mention preliminary attempts to study sea-states governed by a system, of two Alber’s
equations, such as in Stiassnie (2001) and Shukla, Markland & Stenflo (2006).

Note that the time scales involved in the recurrence are much shorter than those
of the kinetic equation. We can say that the choice of overall random phases in the
derivation of the kinetic equation, which results in longer time-scales also ‘average
out’ the recurrence phenomenon. The kinetic equation is the main tool for calculating
nonlinear interaction in wave-forecasting models, see Komen et al. (1994), and it will
probably remain so for some time to come. However, model equations, such as Alber’s
equation can be helpful when addressing phenomena governed by smaller time/space
scales, such as the development of freak waves.
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