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Abstract

The mathematical and statistical properties of the evolution of a system of four interacting surface gravity waves are
investigated in detail. Any deterministic quartet of waves is shown to evolve recurrently, but the ensemble averages
taken over many realizations with random initial conditions reach constant asymptotic values. The characteristic
time-scale for which such asymptotic values are approached is extremely large when randomness is introduced
through the initial phases. The characteristic time-scale becomes of an order comparable to that of the recurrence
periods when beside the random initial phases, the initial amplitudes are taken to be Rayleigh-distributed. The
ensemble-averaged results in the second case resemble, to a certain extent, those derived from the kinetic equation
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The dominance of quartet interactions in the nonlinear evolution of surface gravity waves was first
established by Phillip§l]. The quartet interaction serves as the building brick in almost any model
dealing with spectral evolution. The present work is based on ZakHat@quation for the temporal
evolution of the complex amplitude spectrum. Zakharov's equation is deterministic, i.e. no stochastic
assumptions were made in the course of its derivation, and it is phase-resolving. Earlier, Hasg&glmann
has derived an equation for the nonlinear evolution of the gravity-wave energy spectrum. In the derivation
of Hasselmann’s equation certain assumptions about the stochastic properties of the system are necessar
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These assumptions are often referred to by notions, such as: ‘nearly Gaussian process’, or/fand ‘randor
phase approximation’. Details about application of these concepts to Zakharov’s equation in order to
derive from it the Hasselmann equation can be found in a recent paper by Jatjs3ére Hasselmann
equation, sometimes called the kinetic equation, does not include information about the modal phases
and in this sense it is a phase-averaged equation.

Although the derivation of the kinetic equation does not explicitly require a large number of modes, it
may be taken as implied through the assumption of ‘near Gaussianity’ which is expected to be maintained
throughout the evolution, due to the central limit theorem.

The present work focuses on the evolution characteristics of an integrable system of four waves. The
advantage in considering a four-wave system is that it allows a closed analytic solution. Such a solution
can be used to examine the evolution parameters of a deterministic four-wave system for numerous initial
conditions and for any instant, without the need for numerical integration of the governing equations.
Moreover, by fixing some initial parameters and varying others, the statistics of the solution can be
effectively studied, thus allowing direct estimates of the asymptotic behavior at long times.

A system of four ODEs is obtained from the Zakharov equati@eiction Zsimilar equations have been
derived by the multiple scale method [B}). Applying the technique of Brethertd8], see also Shemer
and Stiassni€7], the detailed solution and its qualitative properties are givedeictions 3—pfollowed
by a numerical example iSection 6 Stochastic aspects of the four-wave system evolution are raised in
Sections 7 and.8n Section #the initial phases are assumed to be random and uniformly distributed, while
in Section 8 Rayleigh distributed initial amplitudes are added. Comparison with solutions of Janssen’s
[4] version of the kinetic equation, for four modes, are give®attion 9 Discussion of the results is
presented irsection 10

2. Formulation

The nonlinear evolution of gravity-wave fields is dominated by the interactions of quirie&he
latter is reflected in the structure of Zakharov’s equation.

0By

o0
Y _// Vo.1.2.3 Bi B2B3 801123 €9+2%'dk; dk, dk3 (2.1)

which has the quartets ‘built-in’, through the Delta-function and the frequency detuning

Ap123=wo+ w1 — w2 — w3 (2.2)

The interaction coefficieni 1 2 3 = V(Ko, K1, K2, k3) are given in Krasitskii8]. The free-surface elevation
is related to the generalized amplitude spectB&(it) by

17 kY2
= / (260) (B® =) 4 coydk, (2.3)

—00

where the frequency is given by the deep-water linear dispersion relation

o’ = glk| (2.4)
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In this paper we study the evolution of wave-fields, which consist of one quartet of free-waves only, so
that

B (k, 1) = B,(t)8(k — k) + By(t)3(k — kp) + B.(1)8(k — k) + By (1)5(k — kg) (2.5)
where
k,+k,—k.—k;=0 (2.6)

Substituting (2.5) into (2.1) under the constraint (2.6) gives a system of four first-order nonlinear ordinary
differential equations:

dB, .

i dr = (Qa - a)a)Ba + 2Vabcd elAu’b’l"dtBZ B.B,; (27a)
.dB,, i A t %

l? = (2, — wp)Bp + 2V, peq €740 B’ B.B, (2.7b)
dBC —iA t p*

l ar = (.Qc — a)C)BC + 2V, peq € 1Cebed B, B,B) (27C)
_dBy —iA I pk

l? = (.Qd — a)d)Bd + 2V, peq € 1Cebed B B,B, (27d)

where the so-called ‘Stokes-corrected’ frequencies are:

Qa = Wq + Vaaau|Ba|2 + 2Vabab|Bb|2 + 2Vucac|Bc|2 + 2Vadad|Bd|2 (288-)
25 = @p + 2Voaval Bal? + Virss| Bo|? + 2Vieve| Bel? + 2Viapa| Bal? (2.8b)
-Qc = W¢ + 2Vcaca|Ba|2 + 2Vcbcb|Bc|2 + Vccccch|2 + Zvcdcdlelz (28C)
24 = ©4 + 2Vaaaa| Bal* + 2Vapap| Bal* + 2Vacae| Bel* + Viaaaa| Bal? (2.8d)

3. Transition to a single unknown

Multiplying (2.7j) by B%,j=a, b, ¢, andd, and subtracting from the result its complex conjugate yields

d d d d .

—|Bul? = —|By|? = ——|B.|? = ——|Bul?® = 4Vupcalm{B: B} B. By €' 3.1

dt| | dt| bl dtl | dt| dl bea Im{B, By B. By } (3.1)
An auxiliary real functionZ(t) is defined by

dZ * % [ Aab.c.at

o= Im{B’B}B.B, €%} 7Z(0)=0 (3.2)
Substituting (3.2) into (3.1) and integrating gives

|Bal? = |Bal? = |By)? = 1Bo|* = =IBc|* + 1Bc1” = =|Bal® + |Bal* = 4VareaZ (3.3)

whereg; = B, (0).
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From (2.7) and (3.2) one can show that

d . dz

—RE(B!BjB.By €'} = —Q2— 3.4

dr & a®b d } dr (3.4)
where

R=802,+ 82, — 2. — 24 =820+ 212 (3.5)

and 2o, £2; are given by

20 = Dapcd + Vaaaa + 2Vavar —2Vacae — 2Vadaa)| Bal® + @Viava+ Voros — 2Voeve — 2Viapa) Bol?
+ (2Vcaca + 2Vcbcb - Vcccc - 2VCdcd)|,BC|2 + (2Vdada + 2dea’b - 2Va’cdc - Vdddd)lﬂd|2 (36a)

21 = AVapcal Vaaaa + Vios + Vecee + Vadaa + 4Vavab — 4Vacac — AVadaa — 4Vicve — 4Vpaba
+ 4Vcdcd} (36b)
Integrating (3.4) front = 0 gives

Z
Re(B} B} BB, &™) = Relff.p) — [ 202 (3.7)
0
From (3.2) and (3.7) we get
dZ 2 0 2
(5) = 1BBPIB 1B ~ | RetBLB1B. ) — 202~ 22 (3.8)
which is rewritten as
Z) = PuZ) = 74t 3.9
() =ro=2a 39)
where the coefficients of the forth-order polynonia(2) are
ap = —0.2502% + 256V (3.10a)
a1 = — Q021 + 64V5 4 (1Bal? + |Bol? — |Bel” = 1B41?) (3.10b)

ay = —$25 + 21|BuPrBeBalcos(@rg, + argp, — argB. — argpy)
+16V3,(1BaBbl? — 1BaBel? — |BaBal® — |BoBe* — 1BsBal? + 1BeBal®) (3.10c)

az = 2820l BaPrBcPalCcOS(args, + argp, — argp. — argpfa)
— WVapea(1BaBrBel? + | BaBrBal® — |BaBeBal® — 1BsBeBal?) (3.10d)

as = | BuBpBcBal?sint(argp, + argp, — argp, — argpy) (3.10e)
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4. Periodicity of amplitudes

The formal solution of (3.9) is

dz
Pa(Z

=

(4.1)

O\N

The actual details depend on the number and values of the real roots of the polynomial; and in principle,
various scenarios may exist. However, for the examples that we study herein, we fougchtiBeind 4

real rootZ, > Z3 > 0 >Z, > Z;. For this case, we apply eq. (255.00) in Byrd and Friedf@aand obtain

from (4.1)

a2 =y {Sn—l ( (Z4 — Z5)(Z5 - Z) K> +sn (s, K)} (4.2)

(Z3— Z2)(Za— Z)’

wheresnis the Jacobian elliptic function with modulus

 (Zs—=Z)(Za — Z)

“TN - 22)(22 - 22) 4.3)

and

2
r= N(Zs— 25)(Z3 — Z,)

| Z3(Za— Zy)
8= 7Z4(Z3 ~7) (4.4b)

Inverting (4.2), we find

(4.4a)

Za(Z3 — Zo)sn’u — Z3(Zs — Z t
5 ZalZs z)SVlZM 3(Z4 2); u = sn(5, k) — a2t (4.5)
(Zg - Zg)sn u — (Z4 - Zg) 14

Utilizing Egs. (123.01) and (131.01) in Byrd and Friedni@}) we obtain

sen(ag *1/y) dn(ag*t/y) — sl — (A — k263 *sn(ag*t/y)

sn(u, k) = 1 — (8)2sn(ag *t/v) o
where

s = sgn (Sin6) (4.7a)
and

0 = argp, + argB, — argB. — argpBq (4.7b)
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Note, that the amplitudg8;|, j = a, b, ¢, d in (3.3) depend o and thus are periodic, with period

Z3
dz 2y 4 2y
T=2!\/E=aé/zsl’l (l,K)=WK(K')
2

whereK is the complete elliptic integral of first kind.

5. Evolution of phases
From (2.7) and (3.3) one can show that

— 207 — (£21/2)Z°
1Bal? + AVapea Z

t t
argB, = argB, — 2Vupea / Po dr — /(‘Qu — w,)dt
0 0

t
Bo — 20Z — (£21/2)Z?
1Bp12 + 4V,peaZ

t
argB, = argpfy — 2Vapea dr — /(Qh — wp)dt
0

— 207 — (§21/2)Z?
|:BC|2 - 4Vahcdz

t t
argB, = arg. — 2Vares | Po i — [ (@~
0 0

t
Bo — 20Z — ($21/2)Z?
|;3d|2 - 4Vabch

t
argB, = argfy — 2Vaa dr — / (24 — wa)dr
0

where
:80 = |,8a13bﬂcﬁd| cosf
From (3.7) we obtain

©® = argB, + argB, — argB. — argB,

—A b dl+COS_1 ﬂa_Q()Z_(‘Ql/Z)ZZ

(4.8)

(5.1a)

(5.1b)

(5.1¢)

(5.1d)

(5.2)

[(4Tabcdz+|,8a|2)(4Tabch + |,3b|2)(_4Tabch + IIBC|2)(_4Tabch + |/3d|2)]1/2

(5.3)

For the free-surface elevatiarto be periodic, the following condition must hold for each mpdes, b,

c,d
argB;(T) — w;T = argp;,
for T given by (4.8).

(5.4)
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Numerical results demonstrate that (5.4) does not hold. Thus, the recurrent four-wave system does not
exhibit strict periodicity. However, from (5.3) it can be shown that

@(T) - Aa,b,c,dT =0 (55)

For exact resonance conditions, (5.5) demonstrates that the futioitself is periodic. An interesting
consequence can be drawn from (5.5) for wave systems consisting of three different waves. This is the
case treated by Shemer and Stias§fjevho considered degenerated quartets, whgrek,, provided

thatk. is not collinear withk, (i.e. the problem is not one-dimensional). In these cases, the constraint
(5.5), together with appropriate translation in the horizontal plane, enable to render two snapshots of the
free-surface taken at= 0 andt = T identical.

Thus, it seems that to a certain extent, one-dimensional deterministic solutions are “less organized” than
their two-dimensional counterparts. Note that this relative “lack of organization” of the one-dimensional
deterministic solutions can result in smoother ensemble averages when random initial conditions are
added.

6. Example

Generally speaking, the input data consists of eight independent physical quantities: three wave-
numbersk,, k, andk., four amplitudeg .|, |8s| |8:], and |B4|, and one phase, see (4.7b). In our
example, we are starting from a resonating quartet wqjth: (0.9806,—0.1961),k,= (0.9806, 01961),

k. =(1.2903,0.2747%, =k, + k, — k. =(0.6709,—0.2747); and allow variations in the components of
k., ks in order to move away from exact resonance. The vageghdk, are

k. = (1.2903— u, 0.2747+ p); kg = (0.6709+ u, —0.2747— p), (6.1)

for —0.15 <u < 0.15.
Here and in the balance of the paper, we chose the case whe@2,s, =0.15,6. =0.08,s, = 0.03.
The initial amplitudes are given by

me; (2 vz
1Bj| = = ) j=ab candd (6.2)
kil \ @)
The initial phasé is varied in the range (0,2.
The departure from exact resonance is indicated by a dimensionless scaled detuning parameter

A= Aa,b,c,d/(‘ggwa) (63)

The dynamics of the system is captured by two dimensionless quangities:modulation range, and
the modulation period. Since in all cases considered the auxiliary fun€ti@nies in the intervak, <
Z < Z3z, and in light of (3.3), the modulation range is defined as

_ 4Vabca’(z3 - ZZ)

. 6.4
|BaBoBeBalt/? ©4)
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Detuning, A

J

Detuning, A

Fig. 1. Isolines of (a) the modulation periad(b) the modulation rangg.

The scaled modulation period is

2w, T
— Zaa 6.5
= (6.5)
seeEq. (4.8)

Isolines oft andp are shown irFFig. 1a and b, respectively.

Note that the coordinatd = 0 corresponds to the exact resonance conditions. The larger values of
|A|, at the bottom and top of the figures, correspond to rather weak nonlinear interactions, which are
manifested by a substantial decrease @ndz. Both figures indicate a very strong dependence on the
initial phased. It seems worthwhile to mention that the exact resonance conditions wher@ are by
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1

0

-1t

2t

N -3

0 200 400 600 800 1000
(a) Time

0 200 400 600 800 1000
(b) Time

Fig. 2. Evolution of a near-resonant quartet; initial phasesBayg(=/6; arg(8,) = 0; arg.) = —n/6; argB,) = 0. (a) auxiliary
functionz; (b) wave amplitudes.

no means special, moreover, the extreme valuep &rdr are obtained for near-resonance, rather than
for resonance conditions.

In the following Sections the discussion focuses on the influence of random initial conditions. In order
to facilitate the assessment of the results in those Sections, it is instructive to compare them with the plots
of deterministic results given iRig. 2 Fig. 2a and b give the evolution & and of the four amplitudes
k.a;,] =a, b, c, d, respectively. The dimensionless detuning parameter hetesis-0.25 and the initial
phase = /3. The time inFig. 2and elsewhere in this paper is rendered dimensionless by multiplication
of the actual time byy,,.

7. Random initial phase

Randomness is introduced into the problem through the initial conditions, using the notation

B;0)=B;=Bjr +ipy=1p1€¥¥),  j=a b, c, d (7.1)
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Here it is assumed that each of the Afg(j = a, b, ¢, andd) is uniformly distributed over (0,72), but
that the amplitudefs;| are held fixed.

From (3.10) and (5.1), one can see that|Bli(t)] depend solely on the combinatien see (4.7b),
whereas each aB);(t) depends also on its arg), respectively.

The random initial phases guarantee the property of ‘statistical homogeneity’, defined as

(BiBF) = 1B , (7.2)

where the brackets indicate an ensemble averagé;anslthe Kronecker delta. The ensemble average
of any quantityQ is defined by

(Q) = / / / / 0 d(argh,) d(argps d(@rghe) d(@rgha), (7.3)

(2n)*

From the structure of (5.1) and the definition (7.3) one can proveBH#& maintain the property of
‘statistical homogeneity’, see (7.2), for all time. Moreover all first and third order mom@js(B,B;B;),
(B,;B;*By); are zero.

The periodicity of any single realization @f and thus of al|B;(t)|, has been shown iBection 4 In
the Appendix we prove thdZ(r)), which oscillates initially, settles down at large time to the asymptotic
value

Za) = 5 [ 122- =7\ = 2 246, ) (7.)

whereg = sin~[(Zs—Z1)/(Z4—Z1)], andZ(B, «) is the Zeta function of Jacobi.

The input data here is almost identical to thatSafction 6 The exception is that the near-resonant
quartet to be discussed here and in sequel includes the following wave végtansik, as before, and
k. = (1.3060, 0.3102), yielding the dimensionless detuning parameter-0.25, see Eq. (6.3).

The evolution of(Z) in time is shown irFig. 3. The ensemble average was computed dier 2000
initial phase®. Two time intervals are shown, the fitst (0, 5000) inFig. 3a and c, and the secohé
(1C°, 1.05x 10°) in Fig. 3b and d. Note that the instarw 5000 is reached after about 800 wave-periods.
Adopting the notation, = (2r/w,)/<’, for the steepnessunder consideration this is well within thg
time-scale. Comparingig. 3a and b for exact resonance, wiily. 3c and d for near resonance conditions,
one can see that the former are somewhat more erratic, since the evolution of the latter is affected by the
detuning frequency. The decay of the oscillations with time is evident for both quartets considered, albeit
being extremely slow.

Fig. 4 provides the evolution of the dimensionless averaged amplitides = a, b, ¢, d, defined as

L ke | (@i(B)?)
(Aj) = - ( 2% ) (7.5)

Naturally, the behavior is very similar to thatkig. 3, due to the simple relations (3.3).
Very recent computations of Annenkov and Shfir@] corroborate our results presented in this Section.
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(@)

A A
N-_3 N -3
v Vv
—4 -4
_5 _5
-6 -6
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Time
0 0
(b) (d)
-1 -1 4
-2 “ZRANANANAANNANANANANANANNAN
A A
NI YAA S AVAVAVAVAVAVAVE g VAVAR! K3
v v
—4 -4
-5 -5
-6 -6 - - . -
1 1.01 102 103 104 1.05 1 1.01 1.02 103 1.04 1.05
Time x 10° Time x 10°

Fig. 3. Evolution of the auxiliary functiofZ), averaged over 2000 initial phases: (a, b) for resonance conditions; (c, d) for near
resonance conditions.

8. Numerical results for random initial amplitudes

As a second exercise we assume that (in addition to random initial phases), the initial ampfifudes
are random, and governed by the Rayleigh distribution, so that their pdf is

2

21,1 exp<_ 1B ) C i—abed
(18,12) (18;1%)
The above assumption assures thagall 8;;, see Eq. (7.1), have a Gaussian distribution with zero mean
and variance|8,|?)/2. The question whether the GaussianitBeft) = B;z(t) + iB;(t) is approximately
maintained for all time, is an important issue in attempts to develop ‘phase-averaged’ equation, such as
the kinetic equation. The values assigned|®|?) in (8.1) are the same as those assigneB in
Sections 6 and.7

In order to render the computations feasible, the number of random initial phases is reduced to
N, = 50. The number of realizations of the initial amplitudes for each one of the four modes was
set toN, = 4-7. The overall number of realizations in the ensembl&lj&/%. The actual initial
amplitudes calculated using (8.1) were selected so that each of them has the same probability of
1/N,.

FUB) = (8.1)
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a 01 3 o1
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< —— Wave a <
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ooy | Wave b
Wave ¢
— Waved
0
1 1.01 1.02 1.03 1.04 1.05 1 1.01 1.02 1.03 1.04 1.05
(b) Time x10° (@ Time x 10°

Fig. 4. Evolution of averaged wave-amplitudes (see Eq. (7.5), averaged over 2000 initial phases: (a, b) exact resonance; (c, d
near resonance conditions.

In Fig. 5the evolution ofZ) with random initial phases only is compared to the case where both initial
phases and amplitudes are random. The behavior is strikingly different, in the sense that for the latter
case nothing interesting occurs for 750 =O(t3).

Computational results for two different numbers of initial amplitude realizatidps; 4 and 7, are
presented irig. 6. The agreement between both graphs indicates that the Rayleigh distribution has been
satisfactorily approximated.

Fig. 7 demonstrates the similarity between the evolution of the amplitudes for exact resonance con-
dition, to that for the near-resonant case. The similarity in the case of random initial amplitudes should
be judged in light of the significant difference observeé&ig. 4, where only random initial phases were
considered.

An interesting result of this Section is the fact that the time required for the system to evolve from
the initial Gaussian condition to its final stage can be estimated to be of the order bé&twaedty, and
definitely much shorter thamn, which is the time-scale implied by Hasselman|i8% kinetic equation.
Similar relatively short evolution timescales have been obtained in some recent papers with a much largel
number of modes with initial random phases: Onorato efldl} solved the full Euler equation in a
box, Janssef] studied the one-dimensional nonlinear Satinger equation, as well as the Zakharov
equation, and Dysthe et &1.2] who performed numerical simulations based on the one-dimensional and
two-dimensional modified nonlinear Séidinger (Dysthe) equation. Similar evolution time-scales were
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<Z>

_6 1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

Fig. 5. Evolution of(Z) for a resonant quartet: Solid line—random phases d)ys 2000; Dashed line—random amplitudes
and phasesy, = 6,N, = 50.

0.5 T T T T T T T T T

<Z>

_2'5 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time

Fig. 6. Evolution of(Z) for near resonance conditions. Number of initial Rayleigh-distributed amplitudes for eachNpade
(solid line); N, = 4 (broken line)N,, = 50 in both cases.
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0.2
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-- Waveb
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Fig. 7. Evolution of averaged wave amplitudesiyr= 50 andN, = 6 for (a) resonance conditions; (b) near-resonance conditions.

obtained also by Annekov and Shrjd®] who considered a finite number of clusters around wave modes
that are in an exact resonance.

9. Comparison with the kinetic equation

Hasselmanifi3] was the first to develop a ‘phase-averaged’ kinetic equatio@ fok|B|?>>. Recently,
Janssen4] has derived the following equation, which contains Hasselmann’s result as its long-time
asymptotic limit:

aCy

o0 .

sin(A t

— = 4// / Voz,l,z,g {C2C3(Co + C1) — CoC1(C2 + C3)} Sor1-2-3 Sin(Ao..2.21)
—OoQ

0,1,2,3

o = dky dk, dks
(9.1)
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Substituting
C(k, t) = C,8(k — k) + Cpo(k — kp) + C.8(k — k) + Cy(k — k) (9.2)
into (9.1) yields

dc, dc,  dc.  dCi  _ ,

SiN(Ag.p.c.at)
——— =8V,.{C:Ca(Cy + Cp) — C,Cu(C + Cp)) > cabedd

(9.3)

d  dr  dr dr a Aabed
The initial conditions are
Ci0O)=cj, j=a, b c d (9.4)

The system (9.3) can be reduced to a single equation, s&y,for

d;“ = 8V3 [(4C3 +3(d, — d. — dy)C? + 2(d.d; — dypd, — dpdy)C? + dbdcdd}SW
(9.5)
where
dy=cp—ca; de=cc+ca; da=cq+ca (9.6)

Denoting byc;, ¢, ¢z the roots of the third order polynomial in the curly brackets of (9.5), one can
integrate (9.5) to obtain

Cc,— C,— ba/b1 C,— by/by 32V2
{ Cl} X { 62} X { 63] = exp abed 11— coS(ypcat)] (9.7)
c,—C1 Cq—C2 Cq—C3 b1 A2 o
where
(c2—¢3)
b = 9.8a
1T {eri(caca) + c2(cz—c1) + caler—c2) (5-82)
(c3—1)
by = 9.8b
27 {e12(ca — ¢3) + co¥(ca—c1) + c52(c1—c2)) (9.8b)
by = (c1=¢2) (9.8¢c)

{c1%(ca—c3) + c2%(c3—¢1) + c3?(c1—2)}
For exact resonance conditions, one assumesAhat ;, — 0, and (9.7) reduces to

C, C, ba/b1 C, ba/by 16V2, t2
[ _cl} X { _CZ] X { _63] = exp| ——abed (9.9)
Ca—C1 Ca—C2 Ca—C3 by

To plotC,(t) one has to solve (9.7) or (9.9). The solutions of (9.9) presented)ir8a are compared with
those of (9.7) shown ifig. 8b. Fig. 8also includes the corresponding results fréection 8in Fig. &

and d, obtained foN, = 50 andN, = 6. Generally speakingig. 8 differs qualitatively from the other
three figures, at least for 500, which ig0(t3). FromFig. 8itis clear that most of the significant changes
occur on the scale. Note that there is no quantitative agreement between the averaged reBidts8m

and those of the kinetic equationkiig. 8a. This discrepancy should be related to the understanding that
the kinetic equation is valid only for a larger number of modes.
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Fig. 8. Evolution of averaged amplitudes: (a) kinetic equation, exact resonance; (b) kinetic equation, near-resonance; (c) and (d)
as in (a) and (b), but for an ensemble average Wi+ 50 andN, = 6.

Instead of considering implicit solutions (9.7) and (9.9), (9.5) can be integrated numerically using a
Runge—Kutta method.

10. Discussion

The main purpose of this section is to shed light on the possible reasons for the significant quantitative
differences between the results of the kinetic equation and those of the ensemble average approact
demonstrated ifrig. 8 This requires, however, addressing first some aspects related to the derivation of
the kinetic equation.

Taking the ensemble average of (3.1) gives

d d d d .
E<|Ba|2> = &<|Bb|2> = —a<|Bc|”-‘> = —&<|Bd|2> = AVpea IM{(B: B} B.By) €%»<4'}  (10.1)

In order to find B} B;; B. B,), the derivative ofB* B; B. B, is taken, substituting (2.7) yields
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d
_IE(BaBZBch) = {[Vaaaa + 2Vabab - 2Vacac - 2Vadad]|Ba|2

+ [2Vabab + Viovss — 2Viese — 2Viapa] | By |*

+[2Vacac + 2Viehe = Vecee — 2Vedeal | Bel?

+ [2Vadad + 2Vodbd — 2Veeded — Vaaaal|Ba|%} B B B. By

+ 2Vapea €XPEiAgp.cat) {|Bal?|Bel?| Bal® + | By|?| B.|?| Bal?

— |Bal?|By|?| B> — | Ba|?| By |?| B4 |} (10.2)

In the course of derivation of the kinetic equation, an ensemble average of both sides of (10.2) is taken,
and the following reduced version is adopted:

d
—i 5 (BiB}BeBa) = 2Vabea exp(—iAap.c.at)({|Bal® (| B2 (| Bal?) + (IBy|?) (| B|*) (| Ba|?)

— (I Bal>Y{IBp|?) {1 BcI?) — (1Bal®{1Bs|?) (| Bal?)} (10.3)

See, for example the transition from (18) to (20) in Jan$$kmwhich makes use of the ‘nearly Gaussian
process’ and ‘random phase’ approximations, expressing sixth order moments in terms of products of
second order moments. In the case of an integrable system of four-waves, the phases, while initially
random, develop a significant coherence in the course of evolution. This is evidenEifgord The
cumulative distribution function and the probability density functior®ofsee Eqg. (5.3)) dat= 1000 are
presented irFig. 9a and b, respectively. The ensemble average was calculatedNyi#h100 andN,
= 7. More dramatic results were obtained for constant initial amplitudesNgre50,000, sedig. 1Q
Fig. 10c shows the cumulative distribution function at an extreme coherent stage of the evolution process
that occurs arount= 100.

As a result of the behavior of the phases the RHS of (10.3) is a poor approximation of the ensemble
average of the RHS of (10.2) foe 20; this is seen from their plot iRig. 11

It is our estimate that comparisons between results obtained by taking ensemble averages over many
realizations of a deterministic system will compare more favorably with those from the kinetic equation,
whenthe number of interacting modes in the systemisincreased. Indeed, Jahgb&ined areasonably
good agreementfor 51 modes. The factthat we have obtained qualitatively similar behavior for four modes,
was rather surprising to us.

Appendix A. on the behavior of (Z(t)) at large t (proof of (7.4)).

The study of the deterministic problem yields the solution
t

Z4s—Z
Z0,1) = Zs — 4= 23 D ou=sn N8, k) — ad? - (A1)
1-— (Z3 — Zz/Z4 — Zz)Sl’lzu Y
which is periodic in time, with period
2yK
r = 2KW (A.2)

1/2
ao/
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Fig. 9. Resonant quartet, ensemble with= 100 andN, = 7: (a) cumulative distribution function @ att = 1,000; (b) probability
density function of® att = 1000; (c) as in (a), but far= 100.

and depends on the initial phase difference

0 = argpB, + argp,—argh.—argfa (A.3)

In the stochastic approach we allow random valueg, efith a uniform pdf in &=, 7]. The ensemble
average is defined by

(Z(t) = 21 / 2(0.1)do (A.4)

In this Appendix the asymptotic value ¢f) is calculated for largé

(Z)s = lim (2) (A.5)

t—00
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Fig. 10. Resonant quartet, ensemble of 50,000 random initial phases: (a) cumulative distribution fun@tatrt 8f1000; (b)
probability density function o® att = 1000; (c) as in (a), but fdr= 100.

To this end, the periodicity af(0, t) is utilized. Its Fourier expansion is:
w .
ZO0.0)= > ci(6)ef™TO (A.6)

n=—oo

where

T
1 |
al®) =7 / 2(0, 1) &2 TO) gy (A7)
0
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Fig. 11. A comparison of the ensemble average of the RHS of equation (10.2) (solid line), to the RHS of equation (10.3) (dashed
line); N, =50,N, = 6.

From (A.4) and (A.6) we obtain

1|7 .
Z(t) = — . (0) €7/ TO) dg A.8
() Zﬂnzzw{/c() (A8)
Applying (A.5) to (A.8) yields
l o0
L)oo = — s A.
where
¢, = lim / cn(6) @™ TO) dg (A.10)
The method of stationary phase guarantees th&,aflor n £ 0, decay according to
1

or faster, see p. 275 in Carrier et@dl3]. Thus, to the leading order, the contribution at largemes from

Co, i.e.
Co -1/2
(Z)oo = — + O(t ) (A.12)
2

From (A.10) and (A.7)

M

Co= / co(0) do (A.13)

-7
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where
1 T
=—— [ Z(6,1)dt A.14
=76 [ z6.1 (A.14)
0
Substituting (A.1) into (A.14) gives
T
(Zs — Z3) / dr
=74 — A.15
co 4 T A 1— o2sn2u ( )

where

Z3—Z
w3722 (A.16)
Za— 7o

Changing the integration variable in (A.15) frdrto u, and utilizing (A.2):

snL(8,«)
Z4 — Z3 du
=Z4— —_— A.17
o) 4 2K / 1 — a?snu ( )
sn=1(8,k)—2K
From Byrd and Friedmaj®], p. 229, eq. (414.01) we obtain
aZ(p, k)
0)=2Z4—(Z4— 2 1+ =Z3— /(24— Z2)(Z3— Z1)Z(B,
co(0) = Za — (Z4 — Z5) N ) 3= V(Za— Z2)(Zz — Z1)Z(B, )
(A.18)
whereZ(g, «) is the Zeta function of Jacobi and
-1 o -1 Z3 — Zl)
= ) = Al
B = sin (K) sin <Z4—Zl , (A.19)
see Byrd and Friedmd®], p. 33.
Substituting (A.18) into (A.13), and (A.13) into (A.12) gives
17
(Zhoo = 5~ / (25— \(Za— Z)(Za — Z2)2(p. )| 6 (A.20)

-7

which is the final result, see Eq. (7.4).
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