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Abstract

The mathematical and statistical properties of the evolution of a system of four interacting surface gravity waves are
investigated in detail. Any deterministic quartet of waves is shown to evolve recurrently, but the ensemble averages
taken over many realizations with random initial conditions reach constant asymptotic values. The characteristic
time-scale for which such asymptotic values are approached is extremely large when randomness is introduced
through the initial phases. The characteristic time-scale becomes of an order comparable to that of the recurrence
periods when beside the random initial phases, the initial amplitudes are taken to be Rayleigh-distributed. The
ensemble-averaged results in the second case resemble, to a certain extent, those derived from the kinetic equation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The dominance of quartet interactions in the nonlinear evolution of surface gravity waves was first
established by Phillips[1]. The quartet interaction serves as the building brick in almost any model
dealing with spectral evolution. The present work is based on Zakharov[2] equation for the temporal
evolution of the complex amplitude spectrum. Zakharov’s equation is deterministic, i.e. no stochastic
assumptions were made in the course of its derivation, and it is phase-resolving. Earlier, Hasselmann[3]
has derived an equation for the nonlinear evolution of the gravity-wave energy spectrum. In the derivation
of Hasselmann’s equation certain assumptions about the stochastic properties of the system are necessary.
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These assumptions are often referred to by notions, such as: ‘nearly Gaussian process’, or/and ‘random
phase approximation’. Details about application of these concepts to Zakharov’s equation in order to
derive from it the Hasselmann equation can be found in a recent paper by Janssen[4]. The Hasselmann
equation, sometimes called the kinetic equation, does not include information about the modal phases,
and in this sense it is a phase-averaged equation.

Although the derivation of the kinetic equation does not explicitly require a large number of modes, it
may be taken as implied through the assumption of ‘near Gaussianity’ which is expected to be maintained
throughout the evolution, due to the central limit theorem.

The present work focuses on the evolution characteristics of an integrable system of four waves. The
advantage in considering a four-wave system is that it allows a closed analytic solution. Such a solution
can be used to examine the evolution parameters of a deterministic four-wave system for numerous initial
conditions and for any instant, without the need for numerical integration of the governing equations.
Moreover, by fixing some initial parameters and varying others, the statistics of the solution can be
effectively studied, thus allowing direct estimates of the asymptotic behavior at long times.

A system of four ODEs is obtained from the Zakharov equation inSection 2(similar equations have been
derived by the multiple scale method by[5]). Applying the technique of Bretherton[6], see also Shemer
and Stiassnie[7], the detailed solution and its qualitative properties are given inSections 3–5, followed
by a numerical example inSection 6. Stochastic aspects of the four-wave system evolution are raised in
Sections 7 and 8. In Section 7the initial phases are assumed to be random and uniformly distributed, while
in Section 8, Rayleigh distributed initial amplitudes are added. Comparison with solutions of Janssen’s
[4] version of the kinetic equation, for four modes, are given inSection 9. Discussion of the results is
presented inSection 10.

2. Formulation

The nonlinear evolution of gravity-wave fields is dominated by the interactions of quartets[1]. The
latter is reflected in the structure of Zakharov’s equation.

i
∂B0

∂t

∞
=
∫∫∫
−∞

V0,1,2,3 B∗
1B2B3 δ0+1−2−3 ei∆0,1,2,3tdk1 dk2 dk3 (2.1)

which has the quartets ‘built-in’, through the Delta-function and the frequency detuning

∆0,1,2,3 = ω0 + ω1 − ω2 − ω3 (2.2)

The interaction coefficientsV0,1,2,3 =V(k0, k1, k2, k3) are given in Krasitskii[8]. The free-surface elevation
is related to the generalized amplitude spectrumB(k,t) by

η = 1

2π

∞∫
−∞

(
k

2ω

)1/2

{B ei(kx−ωt) + cc}dk, (2.3)

where the frequencyω is given by the deep-water linear dispersion relation

ω2 = g|k| (2.4)
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In this paper we study the evolution of wave-fields, which consist of one quartet of free-waves only, so
that

B (k, t) = Ba(t)δ(k − ka) + Bb(t)δ(k − kb) + Bc(t)δ(k − kc) + Bd (t)δ(k − kd) (2.5)

where

ka + kb − kc − kd = 0 (2.6)

Substituting (2.5) into (2.1) under the constraint (2.6) gives a system of four first-order nonlinear ordinary
differential equations:

i
dBa

dt
= (Ωa − ωa)Ba + 2Vabcd ei∆a,b,c,d tB∗

bBcBd (2.7a)

i
dBb

dt
= (Ωb − ωb)Bb + 2Vabcd ei∆a,b,c,d tB∗

aBcBd (2.7b)

i
dBc

dt
= (Ωc − ωc)Bc + 2Vabcd e−i∆a,b,c,d tB∗

dBaBb (2.7c)

i
dBd

dt
= (Ωd − ωd)Bd + 2Vabcd e−i∆a,b,c,d tB∗

cBaBb (2.7d)

where the so-called ‘Stokes-corrected’ frequencies are:

Ωa = ωa + Vaaaa|Ba|2 + 2Vabab|Bb|2 + 2Vacac|Bc|2 + 2Vadad|Bd|2 (2.8a)

Ωb = ωb + 2Vbaba|Ba|2 + Vbbbb|Bb|2 + 2Vbcbc|Bc|2 + 2Vbdbd|Bd|2 (2.8b)

Ωc = ωc + 2Vcaca|Ba|2 + 2Vcbcb|Bc|2 + Vcccc|Bc|2 + 2Vcdcd|Bd|2 (2.8c)

Ωd = ωd + 2Vdada|Ba|2 + 2Vdbdb|Bd|2 + 2Vdcdc|Bc|2 + Vdddd|Bd|2 (2.8d)

3. Transition to a single unknown

Multiplying (2.7j) byB∗
j , j = a, b, c, andd, and subtracting from the result its complex conjugate yields

d

dt
|Ba|2 = d

dt
|Bb|2 = − d

dt
|Bc|2 = − d

dt
|Bd|2 = 4VabcdIm{B∗

aB
∗
bBcBd ei∆a,b,c,d t} (3.1)

An auxiliary real functionZ(t) is defined by

dZ

dt
= Im{B∗

aB
∗
bBcBd ei∆a,b,c,d t}, Z(0) = 0 (3.2)

Substituting (3.2) into (3.1) and integrating gives

|Ba|2 − |βa|2 = |Bb|2 − |βb|2 = −|Bc|2 + |βc|2 = −|Bd|2 + |βd|2 = 4VabcdZ (3.3)

whereβj = Bj (0).
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From (2.7) and (3.2) one can show that

d

dt
Re{B∗

aB
∗
bBcBd ei∆a,b,c,d t} = −Ω

dZ

dt
(3.4)

where

Ω = Ωa + Ωb − Ωc − Ωd ≡ Ω0 + Ω1Z (3.5)

andΩ0, Ω1 are given by

Ω0 = ∆a,b,c,d + (Vaaaa + 2Vabab−2Vacac − 2Vadad)|βa|2 + (2Vbaba+ Vbbbb − 2Vbcbc − 2Vbdbd)|βb|2
+ (2Vcaca + 2Vcbcb − Vcccc − 2Vcdcd)|βc|2 + (2Vdada + 2Vdbdb − 2Vdcdc − Vdddd)|βd|2 (3.6a)

Ω1 = 4Vabcd{Vaaaa + Vbbbb + Vcccc + Vdddd + 4Vabab − 4Vacac − 4Vadad − 4Vbcbc − 4Vbdbd

+ 4Vcdcd} (3.6b)

Integrating (3.4) fromt = 0 gives

Re{B∗
aB

∗
bBcBd ei∆a,b,c,d t} = Re{β∗

aβ
∗
bβcβd} −

Z∫
0

Ω dZ (3.7)

From (3.2) and (3.7) we get(
dZ

dt

)2

= |Ba|2|Bb|2|Bc|2|Bd|2 −
[
Re{β∗

aβ
∗
bβcβd} − Ω0Z − Ω1

2
Z2
]2

(3.8)

which is rewritten as(
dZ

dt

)2

= P4(Z) =
4∑

�=0

a�Z
4−� (3.9)

where the coefficients of the forth-order polynomialP4(Z) are

a0 = −0.25Ω2
1 + 256V 4

abcd (3.10a)

a1 = −Ω0Ω1 + 64V 3
abcd(|βa|2 + |βb|2 − |βc|2 − |βd|2) (3.10b)

a2 = −Ω2
0 + Ω1|βaβbβcβd|cos(argβa + argβb − argβc − argβd)

+ 16V 2
abcd(|βaβb|2 − |βaβc|2 − |βaβd|2 − |βbβc|2 − |βbβd|2 + |βcβd|2) (3.10c)

a3 = 2Ω0|βaβbβcβd|cos(argβa + argβb − argβc − argβd)

− 4Vabcd(|βaβbβc|2 + |βaβbβd|2 − |βaβcβd|2 − |βbβcβd|2) (3.10d)

a4 = |βaβbβcβd|2sin2(argβa + argβb − argβc − argβd) (3.10e)
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4. Periodicity of amplitudes

The formal solution of (3.9) is

t =
Z∫
0

dZ√
P4(Z)

(4.1)

The actual details depend on the number and values of the real roots of the polynomial; and in principle,
various scenarios may exist. However, for the examples that we study herein, we found thata0 > 0 and 4
real rootsZ4 > Z3 > 0 >Z2 > Z1. For this case, we apply eq. (255.00) in Byrd and Friedman[9] and obtain
from (4.1)

a
1/2
0 t = γ

{
sn−1

(√
(Z4 − Z2)(Z3 − Z)

(Z3 − Z2)(Z4 − Z)
, κ

)
+ sn−1(δ, κ)

}
(4.2)

wheresn is the Jacobian elliptic function with modulus

κ =
√

(Z3 − Z2)(Z4 − Z1)

(Z4 − Z2)(Z3 − Z1)
(4.3)

and

γ = 2√
(Z4 − Z2)(Z3 − Z1)

(4.4a)

δ =
√

Z3(Z4 − Z2)

Z4(Z3 − Z2)
(4.4b)

Inverting (4.2), we find

Z = Z4(Z3 − Z2)sn2u − Z3(Z4 − Z2)

(Z3 − Z2)sn2u − (Z4 − Z2)
; u = sn−1(δ, κ) − a

1/2
0

t

γ
(4.5)

Utilizing Eqs. (123.01) and (131.01) in Byrd and Friedman[9], we obtain

sn(u, κ) = δcn(a1/2
0 t/γ) dn(a1/2

0 t/γ) − s[(1 − δ2)(1 − κ2δ2)]
1/2

sn(a1/2
0 t/γ)

1 − (κδ)2sn2(a1/2
0 t/γ)

(4.6)

where

s = sgn (sinθ) (4.7a)

and

θ = argβa + argβb − argβc − argβd (4.7b)
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Note, that the amplitudes|Bj|, j = a , b, c, d in (3.3) depend onZ and thus are periodic, with period

T = 2

Z3∫
Z2

dZ√
P4

= 2γ

a
1/2
0

sn−1(1, κ) = 2γ

a
1/2
0

K(κ) (4.8)

whereK is the complete elliptic integral of first kind.

5. Evolution of phases

From (2.7) and (3.3) one can show that

argBa = argβa − 2Vabcd

t∫
0

β0 − Ω0Z − (Ω1/2)Z2

|βa|2 + 4VabcdZ
dt −

t∫
0

(Ωa − ωa)dt (5.1a)

argBb = argβb − 2Vabcd

t∫
0

β0 − Ω0Z − (Ω1/2)Z2

|βb|2 + 4VabcdZ
dt −

t∫
0

(Ωb − ωb)dt (5.1b)

argBb = argβc − 2Vabcd

t∫
0

β0 − Ω0Z − (Ω1/2)Z2

|βc|2 − 4VabcdZ
dt −

t∫
0

(Ωc − ωc)dt (5.1c)

argBd = argβd − 2Vabcd

t∫
0

β0 − Ω0Z − (Ω1/2)Z2

|βd|2 − 4VabcdZ
dt −

t∫
0

(Ωd − ωd)dt (5.1d)

where

β0 = |βaβbβcβd| cosθ (5.2)

From (3.7) we obtain

Θ = argBa + argBb − argBc − argBd

= ∆a,b,c,dt + cos−1 βo − ΩoZ − (Ω1/2)Z2

[(4TabcdZ+|βa|2)(4TabcdZ + |βb|2)(−4TabcdZ + |βc|2)(−4TabcdZ + |βd|2)]1/2

(5.3)

For the free-surface elevationη to be periodic, the following condition must hold for each modej = a, b,
c, d

argBj(T ) − ωjT = argβj, (5.4)

for T given by (4.8).
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Numerical results demonstrate that (5.4) does not hold. Thus, the recurrent four-wave system does not
exhibit strict periodicity. However, from (5.3) it can be shown that

Θ(T ) − ∆a,b,c,dT = θ (5.5)

For exact resonance conditions, (5.5) demonstrates that the functionΘ(t) itself is periodic. An interesting
consequence can be drawn from (5.5) for wave systems consisting of three different waves. This is the
case treated by Shemer and Stiassnie[7] who considered degenerated quartets, wherekb = ka, provided
that kc is not collinear withka (i.e. the problem is not one-dimensional). In these cases, the constraint
(5.5), together with appropriate translation in the horizontal plane, enable to render two snapshots of the
free-surface taken att = 0 andt = T identical.

Thus, it seems that to a certain extent, one-dimensional deterministic solutions are “less organized” than
their two-dimensional counterparts. Note that this relative “lack of organization” of the one-dimensional
deterministic solutions can result in smoother ensemble averages when random initial conditions are
added.

6. Example

Generally speaking, the input data consists of eight independent physical quantities: three wave-
numberska, kb andkc, four amplitudes|βa|, |βb| |βc|, and |βd|, and one phaseθ, see (4.7b). In our
example, we are starting from a resonating quartet with:ka= (0.9806,−0.1961),kb= (0.9806, 01961),
kc = (1.2903, 0.2747),kd = ka + kb − kc = (0.6709,−0.2747); and allow variations in the components of
kc, kd in order to move away from exact resonance. The variedkc andkd are

kc = (1.2903− µ, 0.2747+ µ); kd = (0.6709+ µ, −0.2747− µ), (6.1)

for −0.15 <µ < 0.15.
Here and in the balance of the paper, we chose the case where�a = 0.2,�b = 0.15,�c = 0.08,�d = 0.03.

The initial amplitudes are given by

∣∣βj

∣∣ = πεj

|kj|

(
2g

ωj

)1/2

, j = a, b, c andd (6.2)

The initial phaseθ is varied in the range (0, 2π).
The departure from exact resonance is indicated by a dimensionless scaled detuning parameter

∆ = ∆a,b,c,d/(ε2
aωa) (6.3)

The dynamics of the system is captured by two dimensionless quantities:ρ the modulation range, andτ
the modulation period. Since in all cases considered the auxiliary functionZ varies in the intervalZ2 ≤
Z≤ Z3, and in light of (3.3), the modulation range is defined as

ρ = 4Vabcd(Z3 − Z2)

|βaβbβcβd|1/2
. (6.4)
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Fig. 1. Isolines of (a) the modulation periodτ; (b) the modulation rangeρ.

The scaled modulation period is

τ = ε2
aωaT

2π
(6.5)

seeEq. (4.8).
Isolines ofτ andρ are shown inFig. 1a and b, respectively.
Note that the coordinate∆ = 0 corresponds to the exact resonance conditions. The larger values of

|∆|, at the bottom and top of the figures, correspond to rather weak nonlinear interactions, which are
manifested by a substantial decrease inρ andτ. Both figures indicate a very strong dependence on the
initial phaseθ. It seems worthwhile to mention that the exact resonance conditions where∆ = 0 are by
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Fig. 2. Evolution of a near-resonant quartet; initial phases: arg(βa) = π/6; arg(βb) = 0; arg(βc) = −π/6; arg(βd) = 0. (a) auxiliary
functionZ; (b) wave amplitudes.

no means special, moreover, the extreme values forρ andτ are obtained for near-resonance, rather than
for resonance conditions.

In the following Sections the discussion focuses on the influence of random initial conditions. In order
to facilitate the assessment of the results in those Sections, it is instructive to compare them with the plots
of deterministic results given inFig. 2. Fig. 2a and b give the evolution ofZ and of the four amplitudes
kaaj, j = a, b, c, d, respectively. The dimensionless detuning parameter here is∆ = −0.25 and the initial
phaseθ = π/3. The time inFig. 2and elsewhere in this paper is rendered dimensionless by multiplication
of the actual time byωa.

7. Random initial phase

Randomness is introduced into the problem through the initial conditions, using the notation

Bj(0) = βj = βjR + iβjI = |βj| eiarg(βj), j = a, b, c, d (7.1)
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Here it is assumed that each of the argβj, (j = a, b, c, andd) is uniformly distributed over (0, 2π), but
that the amplitudes|βj| are held fixed.

From (3.10) and (5.1), one can see that all|Bj(t)| depend solely on the combinationθ, see (4.7b),
whereas each argBj(t) depends also on its arg (βj), respectively.

The random initial phases guarantee the property of ‘statistical homogeneity’, defined as

〈βjβ
∗
i 〉 = |βj|2δi,j, (7.2)

where the brackets indicate an ensemble average andδi,j is the Kronecker delta. The ensemble average
of any quantityQ is defined by

〈Q〉 = 1

(2π)4

∫∫∫ −π∫
−π

Qd(argβa) d(argβb d(argβc) d(argβd), (7.3)

From the structure of (5.1) and the definition (7.3) one can prove thatBj(t) maintain the property of
‘statistical homogeneity’, see (7.2), for all time. Moreover all first and third order moments:〈Bj〉, 〈BjBiBk〉,
〈BjBi

∗Bk〉; are zero.
The periodicity of any single realization ofZ, and thus of all|Bj(t)|, has been shown inSection 4. In

the Appendix we prove that〈Z(t)〉, which oscillates initially, settles down at large time to the asymptotic
value

〈Z∞〉 = 1

2π

∫ π

−π

[Z1 −√
(Z4 − Z2)(Z3 − Z1) Z(β, κ)] dθ, (7.4)

whereβ = sin−1[(Z3–Z1)/(Z4–Z1)], andZ(β, κ) is the Zeta function of Jacobi.
The input data here is almost identical to that ofSection 6. The exception is that the near-resonant

quartet to be discussed here and in sequel includes the following wave vectors:ka andkb as before, and
kc = (1.3060, 0.3102), yielding the dimensionless detuning parameter∆ = −0.25, see Eq. (6.3).

The evolution of〈Z〉 in time is shown inFig. 3. The ensemble average was computed overNp = 2000
initial phasesθ. Two time intervals are shown, the firstt ∈ (0, 5000) inFig. 3a and c, and the secondt ∈
(105, 1.05× 105) in Fig. 3b and d. Note that the instantt = 5000 is reached after about 800 wave-periods.
Adopting the notationtn = (2π/ωa)/εn

a, for the steepnessε under consideration this is well within thet4
time-scale. ComparingFig. 3a and b for exact resonance, withFig. 3c and d for near resonance conditions,
one can see that the former are somewhat more erratic, since the evolution of the latter is affected by the
detuning frequency. The decay of the oscillations with time is evident for both quartets considered, albeit
being extremely slow.

Fig. 4provides the evolution of the dimensionless averaged amplitudes〈Aj〉, j = a, b, c, d, defined as

〈Aj〉 = ka

π

√√√√(ωj〈|Bj|2〉
2g

)
(7.5)

Naturally, the behavior is very similar to that inFig. 3, due to the simple relations (3.3).
Very recent computations of Annenkov and Shrira[10] corroborate our results presented in this Section.
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Fig. 3. Evolution of the auxiliary function〈Z〉, averaged over 2000 initial phases: (a, b) for resonance conditions; (c, d) for near
resonance conditions.

8. Numerical results for random initial amplitudes

As a second exercise we assume that (in addition to random initial phases), the initial amplitudes|βj|
are random, and governed by the Rayleigh distribution, so that their pdf is

f (|βj|) = 2|βj|
〈|βj|2〉 exp

(
− |βj|2

〈|βj|2〉

)
, j = a, b, c, d (8.1)

The above assumption assures that allβjR, βjI , see Eq. (7.1), have a Gaussian distribution with zero mean
and variance〈|βj|2〉/2. The question whether the Gaussianity ofBj(t) = BjR(t) + iBjI(t) is approximately
maintained for all time, is an important issue in attempts to develop ‘phase-averaged’ equation, such as
the kinetic equation. The values assigned to〈|βj|2〉 in (8.1) are the same as those assigned to|βj|2 in
Sections 6 and 7.

In order to render the computations feasible, the number of random initial phases is reduced to
Np = 50. The number of realizations of the initial amplitudes for each one of the four modes was
set toNa = 4–7. The overall number of realizations in the ensemble isNpN

4
a . The actual initial

amplitudes calculated using (8.1) were selected so that each of them has the same probability of
1/Na.
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Fig. 4. Evolution of averaged wave-amplitudes (see Eq. (7.5), averaged over 2000 initial phases: (a, b) exact resonance; (c, d)
near resonance conditions.

In Fig. 5the evolution of〈Z〉 with random initial phases only is compared to the case where both initial
phases and amplitudes are random. The behavior is strikingly different, in the sense that for the latter
case nothing interesting occurs fort > 750 =O(t3).

Computational results for two different numbers of initial amplitude realizations,Na = 4 and 7, are
presented inFig. 6. The agreement between both graphs indicates that the Rayleigh distribution has been
satisfactorily approximated.

Fig. 7 demonstrates the similarity between the evolution of the amplitudes for exact resonance con-
dition, to that for the near-resonant case. The similarity in the case of random initial amplitudes should
be judged in light of the significant difference observed inFig. 4, where only random initial phases were
considered.

An interesting result of this Section is the fact that the time required for the system to evolve from
the initial Gaussian condition to its final stage can be estimated to be of the order betweent2 andt3, and
definitely much shorter thant4, which is the time-scale implied by Hasselmann’s[3] kinetic equation.
Similar relatively short evolution timescales have been obtained in some recent papers with a much larger
number of modes with initial random phases: Onorato et al.[11] solved the full Euler equation in a
box, Janssen[4] studied the one-dimensional nonlinear Schrödinger equation, as well as the Zakharov
equation, and Dysthe et al.[12] who performed numerical simulations based on the one-dimensional and
two-dimensional modified nonlinear Schrödinger (Dysthe) equation. Similar evolution time-scales were
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Fig. 5. Evolution of〈Z〉 for a resonant quartet: Solid line—random phases only,Np = 2000; Dashed line—random amplitudes
and phases;Na = 6,Np = 50.

Fig. 6. Evolution of〈Z〉 for near resonance conditions. Number of initial Rayleigh-distributed amplitudes for each modeNa = 7
(solid line);Na = 4 (broken line).Np = 50 in both cases.
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Fig. 7. Evolution of averaged wave amplitudes forNp = 50 andNa = 6 for (a) resonance conditions; (b) near-resonance conditions.

obtained also by Annekov and Shrira[10] who considered a finite number of clusters around wave modes
that are in an exact resonance.

9. Comparison with the kinetic equation

Hasselmann[3] was the first to develop a ‘phase-averaged’ kinetic equation forC = <|B|2>. Recently,
Janssen[4] has derived the following equation, which contains Hasselmann’s result as its long-time
asymptotic limit:

∂C0

∂t
= 4

∫∫ ∞∫
−∞

V 2
0,1,2,3 {C2C3(C0 + C1) − C0C1(C2 + C3)} δ0+1−2−3

sin(∆0,1,2,3t)

∆0,1,2,3
dk1 dk2 dk3

(9.1)
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Substituting

C(k, t) = Caδ(k − ka) + Cbδ(k − kb) + Ccδ(k − kc) + Cdδ(k − kc) (9.2)

into (9.1) yields

dCa

dt
= dCb

dt
= −dCc

dt
= −dCd

dt
= 8V 2

abcd{CcCd(Ca + Cb) − CaCb(Cc + Cd)} sin(∆a,b,c,dt)

∆a,b,c,d

(9.3)

The initial conditions are

Cj(0) = cj, j = a, b, c, d (9.4)

The system (9.3) can be reduced to a single equation, say forCa:

dCa

dt
= 8V 2

abcd{4C3
a + 3(db − dc − dd)C2

a + 2(dcdd − dbdc − dbdd)C2
a + dbdcdd}sin(∆a,b,c,dt)

∆a,b,c,d

(9.5)

where

db = cb − ca; dc = cc + ca; dd = cd + ca; (9.6)

Denoting byc1, c2, c3 the roots of the third order polynomial in the curly brackets of (9.5), one can
integrate (9.5) to obtain[

Ca − c1

ca − c1

]
×
[
Ca − c2

ca − c2

]b2/b1

×
[
Ca − c3

ca − c3

]b2/b1

= exp

[
32V 2

abcd

b1∆2
[1 − cos(∆a,b,c,dt)]

]
(9.7)

where

b1 = (c2–c3)

{c1
2(c2–c3) + c2

2(c3–c1) + c3
2(c1–c2)} (9.8a)

b2 = (c3–c1)

{c1
2(c2 − c3) + c2

2(c3–c1) + c3
2(c1–c2)} (9.8b)

b3 = (c1–c2)

{c1
2(c2–c3) + c2

2(c3–c1) + c3
2(c1–c2)} (9.8c)

For exact resonance conditions, one assumes that∆a,b,c,d → 0, and (9.7) reduces to[
Ca–c1

ca–c1

]
×
[
Ca–c2

ca–c2

]b2/b1

×
[
Ca–c3

ca–c3

]b2/b1

= exp

(
16V 2

abcd t2

b1

)
(9.9)

To plotCa(t) one has to solve (9.7) or (9.9). The solutions of (9.9) presented inFig. 8a are compared with
those of (9.7) shown inFig. 8b. Fig. 8also includes the corresponding results fromSection 8, in Fig. 8c
and d, obtained forNp = 50 andNa = 6. Generally speaking,Fig. 8b differs qualitatively from the other
three figures, at least fort > 500, which isO(t3). FromFig. 8it is clear that most of the significant changes
occur on the scalet2. Note that there is no quantitative agreement between the averaged results inFig. 8c
and those of the kinetic equation inFig. 8a. This discrepancy should be related to the understanding that
the kinetic equation is valid only for a larger number of modes.
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Fig. 8. Evolution of averaged amplitudes: (a) kinetic equation, exact resonance; (b) kinetic equation, near-resonance; (c) and (d)
as in (a) and (b), but for an ensemble average withNp = 50 andNa = 6.

Instead of considering implicit solutions (9.7) and (9.9), (9.5) can be integrated numerically using a
Runge–Kutta method.

10. Discussion

The main purpose of this section is to shed light on the possible reasons for the significant quantitative
differences between the results of the kinetic equation and those of the ensemble average approach,
demonstrated inFig. 8. This requires, however, addressing first some aspects related to the derivation of
the kinetic equation.

Taking the ensemble average of (3.1) gives

d

dt
〈|Ba|2〉 = d

dt
〈|Bb|2〉 = − d

dt
〈|Bc|2〉 = − d

dt
〈|Bd|2〉 = 4Vabcd Im{〈B∗

aB
∗
bBcBd〉 ei∆a,b,c,d t} (10.1)

In order to find〈B∗
aB

∗
bBcBd〉, the derivative ofB∗

aB
∗
bBcBd is taken, substituting (2.7) yields
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−i
d

dt
(B∗

aB
∗
bBcBd) = {[Vaaaa + 2Vabab − 2Vacac − 2Vadad ]|Ba|2

+ [2Vabab + Vbbbb − 2Vbcbc − 2Vbdbd ]|Bb|2
+ [2Vacac + 2Vbcbc − Vcccc − 2Vcdcd ]|Bc|2
+ [2Vadad + 2Vbdbd − 2Vcdcd − Vdddd ]|Bd|2}B∗

aB
∗
bBcBd

+ 2Vabcd exp(−i∆a,b,c,dt) {|Ba|2|Bc|2|Bd|2 + |Bb|2|Bc|2|Bd|2
− |Ba|2|Bb|2|Bc|2 − |Ba|2|Bb|2|Bd|2} (10.2)

In the course of derivation of the kinetic equation, an ensemble average of both sides of (10.2) is taken,
and the following reduced version is adopted:

−i
d

dt
〈B∗

aB
∗
bBcBd〉 = 2Vabcd exp(−i∆a,b,c,dt){〈|Ba|2〉〈|Bc|2〉〈|Bd|2〉 + 〈|Bb|2〉〈|Bc|2〉〈|Bd|2〉

− 〈|Ba|2〉〈|Bb|2〉〈|Bc|2〉 − 〈|Ba|2〉〈|Bb|2〉〈|Bd|2〉} (10.3)

See, for example the transition from (18) to (20) in Janssen[4], which makes use of the ‘nearly Gaussian
process’ and ‘random phase’ approximations, expressing sixth order moments in terms of products of
second order moments. In the case of an integrable system of four-waves, the phases, while initially
random, develop a significant coherence in the course of evolution. This is evident fromFig. 9. The
cumulative distribution function and the probability density function ofΘ (see Eq. (5.3)) att = 1000 are
presented inFig. 9a and b, respectively. The ensemble average was calculated withNp = 100 andNa

= 7. More dramatic results were obtained for constant initial amplitudes andNp = 50,000, seeFig. 10.
Fig. 10c shows the cumulative distribution function at an extreme coherent stage of the evolution process
that occurs aroundt = 100.

As a result of the behavior of the phases the RHS of (10.3) is a poor approximation of the ensemble
average of the RHS of (10.2) fort > 20; this is seen from their plot inFig. 11.

It is our estimate that comparisons between results obtained by taking ensemble averages over many
realizations of a deterministic system will compare more favorably with those from the kinetic equation,
when the number of interacting modes in the system is increased. Indeed, Janssen[4] obtained a reasonably
good agreement for 51 modes. The fact that we have obtained qualitatively similar behavior for four modes,
was rather surprising to us.

Appendix A. on the behavior of〈Z(t)〉 at large t (proof of (7.4)).

The study of the deterministic problem yields the solution

Z(θ, t) = Z4 − Z4 − Z3

1 − (Z3 − Z2/Z4 − Z2)sn2u
; u = sn−1(δ, κ) − a

1/2
0

t

γ
(A.1)

which is periodic in time, with period

T = 2γK(κ)

a
1/2
0

(A.2)
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Fig. 9. Resonant quartet, ensemble withNp = 100 andNa = 7: (a) cumulative distribution function ofΘ att= 1,000; (b) probability
density function ofΘ at t = 1000; (c) as in (a), but fort = 100.

and depends on the initial phase difference

θ = argβa + argβb–argβc–argβd (A.3)

In the stochastic approach we allow random values ofθ, with a uniform pdf in (−π, π]. The ensemble
average is defined by

〈Z(t)〉 = 1

2π

π∫
−π

Z(θ, t) dθ (A.4)

In this Appendix the asymptotic value of〈Z〉 is calculated for larget:

〈Z〉∞ = lim
t→∞〈Z〉 (A.5)
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Fig. 10. Resonant quartet, ensemble of 50,000 random initial phases: (a) cumulative distribution function ofΘ at t = 1000; (b)
probability density function ofΘ at t = 1000; (c) as in (a), but fort = 100.

To this end, the periodicity ofZ(θ, t) is utilized. Its Fourier expansion is:

Z(θ, t) =
∞∑

n=−∞
cn(θ) e2iπnt/T (θ) (A.6)

where

cn(θ) = 1

T

T∫
0

Z(θ, t) e−2iπnt/T (θ) dt (A.7)
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Fig. 11. A comparison of the ensemble average of the RHS of equation (10.2) (solid line), to the RHS of equation (10.3) (dashed
line);Np = 50,Na = 6.

From (A.4) and (A.6) we obtain

〈Z(t)〉 = 1

2π

∞∑
n=−∞


 π∫

−π

cn(θ) e2iπnt/T (θ)dθ


 (A.8)

Applying (A.5) to (A.8) yields

〈Z〉∞ = 1

2π

∞∑
n=−∞

Cn, (A.9)

where

Cn = lim
t→∞

π∫
−π

cn(θ) e2iπnt/T (θ) dθ (A.10)

The method of stationary phase guarantees that allCn, for n �= 0, decay according to

Cn ∝ 1

t1/2
(A.11)

or faster, see p. 275 in Carrier et al.[13]. Thus, to the leading order, the contribution at larget comes from
C0, i.e.

〈Z〉∞ = C0

2π
+ O(t−1/2) (A.12)

From (A.10) and (A.7)

C0 =
π∫

−π

c0(θ) dθ (A.13)
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where

c0 = 1

T (θ)

T∫
0

Z(θ, t) dt (A.14)

Substituting (A.1) into (A.14) gives

c0 = Z4 − (Z4 − Z3)

T

T∫
0

dt

1 − α2sn2u
(A.15)

where

α =
√

Z3 − Z2

Z4 − Z2
(A.16)

Changing the integration variable in (A.15) fromt to u, and utilizing (A.2):

c0(θ) = Z4 − Z4 − Z3

2K

sn−1(δ,κ)∫
sn−1(δ,κ)−2 K

du

1 − α2sn2u
(A.17)

From Byrd and Friedman[9], p. 229, eq. (414.01) we obtain

c0(θ) = Z4 − (Z4 − Z3)

[
1 + αZ(β, κ)√

(1 − α2)(κ2 − α2)

]
= Z3 −√

(Z4 − Z2)(Z3 − Z1)Z(β, κ)

(A.18)

whereZ(β, κ) is the Zeta function of Jacobi and

β = sin−1
(

α

κ

)
= sin−1

(
Z3 − Z1

Z4 − Z1

)
, (A.19)

see Byrd and Friedman[9], p. 33.
Substituting (A.18) into (A.13), and (A.13) into (A.12) gives

〈Z〉∞ = 1

2π

π∫
−π

[
Z3 −√

(Z4 − Z2)(Z3 − Z1)Z(β, κ)
]

dθ (A.20)

which is the final result, see Eq. (7.4).
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