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The existence of solitary waves near the minimum phase speed for waves in the
gravity–capillary regime triggered our search for additional wave forms. We show
that the governing Schrödinger-type equation also has a rich family of periodic
solutions, and a preliminary study of these solutions is the objective of the present
note.

1. Introduction
Longuet-Higgins (1989) was the first to provide numerical evidence that symmetric

solitary waves are possible on a fluid of infinite depth, in the neighbourhood of the
minimum phase speed of gravity–capillary waves. Ever since, these rather special
waves have been the subject of intense study.

Vanden-Broeck & Dias (1992) computed two types of symmetric solitary waves
near the minimum phase speed in infinite water depth, these being the ‘elevation’ and
the ‘depression’ waves, and thus extended the work of Longuet-Higgins (1989), which
focused on the ‘depression’ type only.

Later Akylas (1993) and Longuet-Higgins (1993) found that these solitary waves
may be interpreted as particular envelope-soliton solutions of the corresponding
Schrödinger equation. At the minimum phase speed it turns out that the phase speed
equals the group velocity, and thus the envelope travels with the same speed as the
carrier wave itself. The ‘elevation’ or ‘depression’ waves emerge when the maximum
of the envelope coincides with the maximum or the minimum of the carrier wave,
respectively.

Theoretical support for the asymptotic and numerical studies cited above was
obtained by Iooss & Kirchgässner (1990) and Iooss & Kirrmann (1996), who provided
rigorous existence proofs for small-amplitude symmetric solitary waves at finite and
infinite water depth, respectively.

Asymmetric solitary waves, where the maximum of the envelope does not coincide
with a maximum or a minimum of the carrier wave, require special treatment, as
stated in several of the above cited studies. By using a revised perturbation technique,
which takes into account exponentially small terms, Yang & Akylas (1997) showed
that the solution had an extra term, which grows exponentially in space. This extra



94 J. H. Rasmussen and M. Stiassnie

term, however, vanishes in the cases of symmetric solitary waves, justifying the results
of e.g. Akylas, Dias & Grimshaw (1998).

In a related effort, Benjamin (1992) proposed an integro-differential equation for
interfacial waves in a two-fluid system, taking the lower fluid to be of infinite depth
and taking into account that the interface is subject to capillary effects. Recently,
Benjamin (1996) discussed solitary waves of this evolution equation, and he further-
more provided an existence proof that this evolution equation also exhibited periodic
solutions of a new type. Unfortunately, Benjamin did not set up an explicit expres-
sion for this periodic solution. However, Akylas et al. (1998) transformed Benjamin’s
evolution equation into a Schrödinger-type evolution equation, similar to the one
studied in the present note.

Symmetric as well as asymmetric periodic wave forms in the gravity–capillary
regime have been studied numerically by Zufiria (1987), and as described in Dias
(1994) a periodic wave form bifurcates into the two types of symmetric solitary waves,
when approaching the minimum phase speed.

In this study, we focus our attention on periodic wave forms near the minimum
phase speed of gravity–capillary waves. The governing equations are formulated in
§ 2, the periodic solutions are derived in § 3 studied in § 4, and in § 5 the periodic
solutions are compared to those computed by e.g. Zufiria (1987).

2. Governing equations
Linear gravity–capillary waves on the surface of a deep fluid obey the dispersion

relation

ω2 = gk + sk3,

where ω and k denote the angular frequency and the wavenumber of infinitesimal
periodic waves, respectively, g is the gravitational acceleration, and s is the coefficient
of surface tension σ divided by the fluid density ρ.

We follow Vanden-Broeck & Dias (1992) and Akylas et al. (1998), and use di-
mensionless variables based on s/c2 as the characteristic length scale and s/c3 as the
characteristic time scale, c being the corrected phase speed. Thus, the dimensionless
corrected phase speed is 1 identically.

The dimensionless dispersion relation takes the form

ω2 = |k|(α+ k2), (2.1)

where

α =
gs

c4
(2.2)

is a dimensionless parameter.
Accounting for nonlinear and dispersive effects, the envelope of a weakly nonlinear

gravity–capillary wave on a deep fluid is governed by the cubic nonlinear Schrödinger
equation (NLS) which is correct to third order in the wave steepness (ε = ka), a being
the wave amplitude. See, for example Djordjevic & Redekopp (1977). An equation
that includes effects up to fourth order was derived by Dysthe (1979) for pure gravity
waves on a deep fluid. Hogan (1985) extended Dysthe’s equation to gravity–capillary
waves on a deep fluid, starting his derivation from Zakharov’s (1968) integral equation.

In terms of the dimensionless variables used here, the equation derived by Hogan
(1985) for the envelope A(x, t) of the free-surface elevation η

η(x, t) = 1
2
ε
(
Aei(kx−ωt) + A∗e−i(kx−ωt))+ O(ε2) (2.3)
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takes the form

iAT + pAXX + qA2A∗ + iε(rAXXX + uA2A∗X + v|A|2AX)− εkAφX |Z=0 = 0 (2.4)

as given by Akylas et al. (1998). Here X = ε(x − cgt), Z = εz, and T = ε2t are
variables that describe the wave train’s modulations in a frame of reference moving
with the group velocity cg(= ∂ω/∂k); i is the imaginary unit, and the asterisk denotes
complex conjugation.

To leading order in the wave steepness ε� 1, equation (2.4) reduces to the familiar
cubic NLS. The first term in (2.4), which is proportional to ε, includes higher-
order modulation terms; whereas the last term in (2.4) proportional to ε reflects the
interaction with the induced mean flow. The induced mean flow is described by the
velocity potential φ, which satisfies the following boundary value problem:

φXX + φZZ = 0 (−∞ < Z 6 0,−∞ < X < ∞),

φZ = 1
2
ω(|A|2)X (Z = 0),

|∇φ| → 0 (Z → −∞),

 (2.5)

∇ being the gradient operator (∇ = (∂/∂X, ∂/∂Z)). In solving this boundary value
problem, we first apply a horizontal Fourier transformation to (2.5), which reduces the
problem to a linear second-order differential equation with corresponding boundary
conditions. By putting Z = 0 in the solution, applying the inverse Fourier trans-
formation and differentiating with respect to X, we obtain

φX |Z=0 = −1

2

∫ ∞
−∞
|k|eikX

(
1

2π

∫ ∞
−∞

e−ikX |A|2dX
)

dk. (2.6)

The coefficients of the rest of the terms in (2.4) are given by the following expressions:

p =
ω

8k2

3k4 + 6αk2 − α2

(α+ k2)2
, (2.7a)

q = −ωk
2

16

2k4 + αk2 + 8α2

(α− 2k2)(α+ k2)
, (2.7b)

r = − ω

16k3

(α− k2)(k4 + 6αk2 + α2)

(α+ k2)3
, (2.7c)

u =
ωk

32

(α− k2)(2k4 + αk2 + 8α2)

(α− 2k2)(α+ k2)2
, (2.7d)

v = −3ωk

16

4k8 + 4αk6 − 9α2k4 + α3k2 − 8α4

(α− 2k2)2(α+ k2)2
, (2.7e)

where ω is determined from the dispersion relation (2.1).

3. Solutions
We are looking for solutions to (2.4) in the form

A = R(X) exp {i(λT + εf(X))} , (3.1)

where R(X) and f(X) are real functions of X and λ is a constant.
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Substituting (3.1) and perturbation series for R, f and the mean flow potential φ

R = R0 + εR1 + · · · , f = f0 + · · · , φ = φ0 + · · ·
into (2.4), and separating the equation in real and imaginary terms and by order, we
obtain a hierarchy of equations.

The lowest-order real terms yields

pR0,XX − λR0 + qR3
0 = 0, (3.2)

and the lowest-order imaginary terms are satisfied identically.
At the next order, we find that the real and imaginary terms yield

pR1,XX − λR1 + 3qR2
0R1 = kR0φ0,X |Z=0 (3.3a)

and
pR0f0,XX + 2pR0,Xf0,X + rR0,XXX + (u+ v)R2

0R0,X = 0, (3.3b)

which determine R1 from R0 and φ0,X |Z=0 (which by substitution of (3.1) and the
perturbation series into (2.6) can be determined from R0), and f0 from R0. At the
following orders j = 2, 3, . . ., we obtain differential equations to determine Rj and
fj−1 from lower-order quantities successively. In this short note we however focus on
deriving expressions for the lowest-order contribution to R and f only.

Assuming that pq > 0, a solution to (3.2) is

R0 = dn

{(
q

2p

)1/2

X,m

}
(3.4)

with
λ =

2− m
2

q. (3.5)

Here dn{U,m} is a Jacobian elliptic function and m (0 6 m 6 1) is a parameter which
determines the form of the dn-function (or the envelope), see Abramovitz & Stegun
(1972). Generally, the dn-function is 2K(m) periodic, K(m) being the complete elliptic
integral of the first kind. This solution has been obtained as a solution to the cubic
Schrödinger equation in the gravity wave regime by e.g. Yuen & Lake (1982), but it
has not been studied in detail in the gravity–capillary regime.

For m = 0 the dn-function simplifies significantly to dn{U,m} = 1 with λ = q, and
the solution then yields a Stokes-type wave. Half the period is found to be K(m) = 1

2
π

even though it makes no sense to define a period for a constant function.
For m = 1 the dn-function simplifies to dn{U,m} = sech{U} with λ = 1

2
q, and the

solution then yields an envelope soliton. Half the period K(m) tends towards infinity,
which is reasonable as there is no periodicity for an envelope soliton.

The solution (3.4) can be verified by insertion in (3.2), and as indicated above, the
solution is in agreement with Akylas et al. (1998) for m = 1.

By inserting (3.4) into (3.3b), we obtain a linear and inhomogeneous second-order
differential equation for f0

p dn

{(
q

2p

)1/2

X,m

}
f0,XX + 2p

(
dn

{(
q

2p

)1/2

X,m

})
X

f0,X

+ r

(
dn

{(
q

2p

)1/2

X,m

})
XXX

+ (u+ v)dn2

{(
q

2p

)1/2

X,m

}(
dn

{(
q

2p

)1/2

X,m

})
X

= 0. (3.6)
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The differential equation, which at first sight seems rather complex, is solved by using
standard integration techniques.

For 0 < m < 1, we first multiply (3.6) with dn{U,m} and by using straightforward
integration techniques, we obtain

pdn2

{(
q

2p

)1/2

X,m

}
f0,X +

qr

4p
(2− m) dn2

{(
q

2p

)1/2

X,m

}

+
p(u+ v)− 3qr

4p
dn4

{(
q

2p

)1/2

X,m

}
= C1. (3.7)

Then we divide (3.7) by pdn2{U,m} and integrate once more, to obtain

f0 =
C1

p(1− m)

((
2p

q

)1/2

Z

{(
q

2p

)1/2

X + K(m), m

}
+

E(m)

K(m)
X

)
+ C2

− qr

4p2
(2− m)X − p(u+ v)− 3qr

4p2

((
2p

q

)1/2

Z

{(
q

2p

)1/2

X,m

}
+

E(m)

K(m)
X

)
. (3.8)

Here Z{U,m} is the Jacobian Zeta function, which is 2K(m) periodic too. E(m) is the
complete elliptic integral of the second kind, and C1 and C2 are arbitrary constants
of integration.

For m = 0 the differential equation (3.3b) simplifies significantly to pf0,XX = 0, and
the solution is f0 = C1X + C2. This is in agreement with (3.8) for m → 0, where
Z{U,m} → 0, K(m)→ 1

2
π and E(m)→ 1

2
π.

For m = 1 we use the same integration technique as for 0 < m < 1, but by
assuming that f0 is bounded for X → ∞, it is seen that the left-hand side of (3.7)
tends towards zero and like Longuet-Higgins (1993), we put C1 = 0 to accomplish
that. As Z{U,m} → tanh{U}, K(m) → ∞ and E(m) → 1 for m → 1, the solution for
f0 simplifies to

f0 = C2 − qr

4p2
X − p(u+ v)− 3qr

4p2

(
2p

q

)1/2

tanh

{(
q

2p

)1/2

X

}
, (3.9)

which, except for the constant of integration, is in agreement with Akylas et al. (1998).

By using (2.3), (3.1), (3.4), and (3.5), the surface elevation correct to lowest order in
ε can be written as

η = εdn

{(
q

2p

)1/2

X,m

}
cos {kx− Ωt+ εf0(X)} , (3.10)

where f0(X) has not been inserted in order to avoid too bulky expressions. Here

Ω = ω − 2− m
2

qε2 (3.11)

is the corrected angular frequency (0 6 ε� 1).
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4. More details about the periodic solution
4.1. The coefficients

The group velocity of the waves is

cg =
∂ω

∂k
=
ω

2k

α+ 3k2

α+ k2
, (4.1)

which for linear waves (ε = 0) becomes equal to the phase velocity (c = 1) when
k = k0 = 1

2
, ω = ω0 = 1

2
and α = α0 = 1

4
. This is seen by solving (2.1) and (4.1)

for ω = k and cg = 1. The rest of the coefficients then take the values p0 = 1
2
,

q0 = 11/(16)2 r0 = u0 = 0 and v0 = 3
32

, from which it is found that p0q0 > 0, making
the solution (3.4) and (3.8) valid.

For small but finite waves (0 < ε� 1) the corrected phase speed is given by

c =
Ω

k
=
ω

k
− 2− m

2

q

k
ε2,

which for c = 1 yields that Ω = k.
To estimate the values of k, α and thereby ω for which the corrected phase speed

and the group velocity are the same, we expand the wavenumber k and the parameter
α in series:

k = k0 + ε2k1, (4.2)

and

α = α0 + ε2α1. (4.3)

These are inserted in Taylor expansions of (4.1) and (3.11):

cg(k0, α0) +
∂cg

∂k

∣∣∣∣
(k0 ,α0)

ε2k1 +
∂cg

∂α

∣∣∣∣
(k0 ,α0)

ε2α1 = 1, (4.4)

ω(k0, α0) +
∂ω

∂k

∣∣∣∣
(k0 ,α0)

ε2k1 +
∂ω

∂α

∣∣∣∣
(k0 ,α0)

ε2α1 − 2− m
2

qε2 = k0 + ε2k1. (4.5)

For both of the above equations the lowest-order terms are fulfilled by choosing
k0, α0 and thereby ω0 according to the results for ε = 0. From (4.1) we find that
∂cg/∂α|(k0 ,α0) = 0, the second-order terms in (4.4) yield k1 = 0, and the second-order
terms in (4.5) then yield

∂ω

∂α

∣∣∣∣
(k0 ,α0)

α1 =
2− m

2
q.

By using (2.1) for k0 = ω0 = 1
2
, we find that

α1 = (2− m)q. (4.6)

With the new estimates for the wavenumber k and the parameter α it is possible
to determine the new estimates for ω, p, q, r, u and v. Correct to ε2 the angular
frequency ω takes the simple form

ω = ω0 + ε2ω1,

where

ω1 = (2− m)qω0,

as found by inserting (4.2), (4.3) and the values k0 = 1
2
, k1 = 0, α0 = 1

4
and (4.6) in a

Taylor expansion of the dispersion relation (2.1).
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By inserting the calculated coefficients into (3.11) and (4.1), we find that Ω = 1
2

= k
and cg = 1 = c (correct to second order), as it should be.

The sign of the product pq which is crucial for the validity of the solution (3.4)
does not change within the region considered 0 6 m 6 1 and 0 6 ε� 1.

For given values of ε and m, we can calculate α by using (4.3) and (4.6). With g, s
and α the physical value of the corrected phase velocity c can be calculated from (2.2).
Now, physical values for the wavenumber k and the corrected frequency Ω can be
calculated from the normalization, i.e. from k = 1

2
c2/s and Ω = 1

2
c3/s. Finally the wave

amplitude a can be calculated from the definition of the wave steepness ε, i.e. a = ε/k.

4.2. Simplifications of the f-function

It appears to us that it is not necessary to perform a revised perturbation analysis
similar to that of Yang & Akylas (1997) including exponentially small terms for
0 6 m < 1. This is because the envelope minimum, even though it may be small, will
be much greater than any exponential small term. However, we restrict ourselves to
symmetric solutions.

In order to obtain periodicity and symmetry for the wave packet, we furthermore
assume that the wave crest coincides with the maximum for the envelope, and that
there are n waves (n integer) per modulation wavelength. Then we can determine the
constants of integration C1 and C2 appearing in (3.8) and thereby f0.

Starting from the expression for the surface elevation correct to lowest order in
ε (3.8) and (3.10) it is first worth noticing that the x- and t-terms appearing in the
argument of the cosine can, because k = Ω = 1

2
(c = 1), and cg = c = 1, be combined

into a single X-term, yielding

η = εdn

{(
q

2p

)1/2

X,m

}
cos { 1

2
ε−1X + εf0(X)}.

For 0 < m < 1, we for simplicity consider X1 = 0 and X2 =
(
(2p)/q

)1/2
2K(m),

corresponding to two succeeding envelope nodes, where the dn{U,m} simplifies to 1
and Z{U,m} simplifies to 0. By forcing the argument of the cosine to be 0 at X1 and
2nπ at X2, where n is a positive integer, we can determine the constants of integration,
C1 and C2 as

C1 = (1− m)p
K(m)

E(m)

((
q/2p

)1/2
nπ

K(m)ε
− k

ε2
+
qr

4p2
(2− m) +

p(u+ v)− 3qr

4p2

E(m)

K(m)

)
,

and
C2 = 0.

By substituting these into (3.8), f0 is found to be given by

f0 =
K(m)

E(m)

((
q/2p

)1/2
nπ

K(m)ε
− k

ε2
+
qr

4p2
(2− m) +

p(u+ v)− 3qr

4p2

E(m)

K(m)

)

×
(

2p

q

)1/2

Z

{(
q

2p

)1/2

X + K(m), m

}

+
K(m)

E(m)

((
q/2p

)1/2
nπ

K(m)ε
− k

ε2

)
X

−p(u+ v)− 3qr

4p2

(
2p

q

)1/2

Z

{(
q

2p

)1/2

X,m

}
. (4.7)
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In order to keep f0(X) as an O(1)-function and prevent it from being an O(ε−2)-
function in X, we must further demand that(

q/2p
)1/2

nπ

K(m)ε
− k

ε2
= 0, (4.8)

which restricts the number of free parameters from the three (ε, m and n) to only two
of these. This restriction will be illustrated in more details in the next section. The
final result for f0(X) is

f0 =

(
qr

4p2
(2− m)

K(m)

E(m)
+
p(u+ v)− 3qr

4p2

)(
2p

q

)1/2

Z

{(
q

2p

)1/2

X + K(m), m

}

−p(u+ v)− 3qr

4p2

(
2p

q

)1/2

Z

{(
q

2p

)1/2

X,m

}
. (4.9)

For m = 0 the solution is given by f0 = C1X + C2, and none of the constants can
be determined by using the above arguments.

For m = 1 the solution is given by (3.9). As asymmetric solitary waves require
special treatment, cf. Yang & Akylas (1997): the constant of integration C2 has to be
put equal to zero in order to have the maximum of the envelope coinciding with a
maximum of the carrier wave. Thus the solution is

f0 = − qr

4p2
X − p(u+ v)− 3qr

4p2

(
2p

q

)1/2

tanh

{(
q

2p

)1/2

X

}
, (4.10)

which is in agreement with Akylas et al. (1998).

4.3. The restriction on ε, m and n

The restriction (4.8) means that only two of the three parameters (ε, m and n) can
be chosen freely. The restriction (4.8) is mapped as curves of constant (integer) n in
figure 1 with ε as the abcissa and m as the ordinate. As an upper limit for ε we
have chosen ε = 1, which is far below the maximum steepness for a gravity–capillary
wave (εmax = 2.3 as suggested by Crapper 1984) and identical to the absolute upper
limit due to the perturbation techniques used. The curves have been truncated near
m = 0 and near m = 1 to indicate that the curves do not reach these values. This
non-uniformity in the limits m → 0, 1 results from the fact that n is meaningless at
these limits.

It is seen from the figure that on curves of constant n, m increases with the
increasing of ε and that the curves tend asymptotically towards m = 1 for ε ‘large’.
As a numerical example, which will be studied throughout the rest of this paper, we
choose ε = 0.5 and n = 4, which yield m ≈ 0.932.

4.4. The surface elevation

As mentioned in § 4.2 the expression for the surface elevation correct to lowest order
in ε (3.8) and (3.10) simplifies further to

η = εdn

{(
q

2p

)1/2

X,m

}
cos
{

1
2
ε−1X + εf0(X)

}
(4.11)

when the group velocity and the phase velocity are identical (c = cg = 1). Here the
coefficients q and p vary slightly with ε and m.
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1.00.80.60.40.20

0.2

0.4

0.6

0.8

1.0

ε

m

Figure 1. The condition (4.8). The parameter m versus the wave steepness ε. The curves are curves
of constant n, starting from the right n = 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48.

2420840
–1.0

0

0.5

1.0

X

12 16

η
ε

–0.5

Figure 2. The surface elevation as a function of X = ε(x− cgt), for ε = 0.5 and n = 4 (m ≈ 0.932).
- - -, The envelope given by (3.4); – – –, the surface elevation without the higher-order correction
f0(X); ——, the surface elevation with the higher-order correction f0(X).

The surface elevation correct to lowest order in ε as given by (4.11) is plotted
for ε = 0.5 and n = 4 (m ≈ 0.932) in figure 2, with and without the higher-order
correction f0(X).

It is seen that the higher-order correction of the surface elevation f0(X) does not
change the overall picture, except that it somewhat increases/decreases the length
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ε

0.88

0.90

0.92

0.94

0.96

0.98

1.00

k
km

Figure 3. The wavenumber. ——, The normalized wavenumber k/km as function of the wave
steepness ε: curves of constant n, starting from the bottom right corner n = 1, 2, 3, 4, 6, 8, 12.
· · · · · ·, The limiting curves for m: lower curve, m = 0, upper curve, m = 1.

of the higher/lower waves in the group, which is in agreement with the lengthening
effect by nonlinearity.

4.5. Determination of the wavenumber k and the corrected angular frequency Ω

On the basis of figure 1 and the concluding remarks of § 4.1, we can determine
curves of constant n for the physical values for the wavenumber k and the corrected
angular frequency Ω. The wavenumber and the corrected angular frequency have
been normalized with km and ωm, respectively, and are illustrated in figures 3 and 4;
km and ωm are the physical values for the wavenumber and the angular frequency at
the minimum phase speed (ε = 0) and are given by

km =
(g
s

)1/2

, (4.12a)

ωm =

(
4g3

s

)1/4

. (4.12b)

Simple algebraic manipulations of the expressions for the wavenumber and the
corrected angular frequency lead to

k

km
= (4α)−1/2 =

(
1 + 11

64
(2− m)ε2

)−1/2
, (4.13)

Ω

ωm
= (4α)−3/4 =

(
1 + 11

64
(2− m)ε2

)−3/4
. (4.14)

As an upper limit for ε we use ε = 1 as in figure 1 and once again the curves have
been truncated near m = 0 and near m = 1 to indicate that they do not reach these
values. Equations (4.13) and (4.14) for the values m = 0, 1 are indicated by dotted
curves in the figures.
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Figure 4. The corrected angular frequency. ——, The normalized corrected angular frequency Ω/ωm
as function of the wave steepness ε: curves of constant n, starting from the bottom right corner
n = 1, 2, 3, 4, 6, 8, 12. · · · · · ·, The limiting curves for m: lower curve, m = 0, upper curve, m = 1.

The curves of constant n start near the curve for m = 0 from where the curves for
the wavenumber k and the corrected angular frequency Ω decrease when increasing
ε, and they tend asymptotically towards the curve for m = 1.

Following our previous example with ε = 0.5 and n = 4 (m ≈ 0.932), we find
that the normalized wavenumber is k/km ≈ 0.978, and that the normalized corrected
angular frequency is Ω/ωm ≈ 0.967.

4.6. Numerical example for water waves

For a water–air interface the coefficient of surface tension is taken as σ = 7.4 ×
10−2 N m−1, and with a fluid density of ρ = 1× 103 kg m−3, the coefficient of surface
tension divided by the fluid density takes the value s = 7.4× 10−5 m3 s−2. Finally, the
gravitational acceleration is set to be g = 9.81 m s−2. Thus, the wavenumber and the
angular frequency at the minimum phase speed can be calculated as km = 364.10 m−1

(Lm = 1.73 cm) and ωm = 84.520 s−1 (Tm = 0.0743 s), respectively. The phase speed
of this wave is found to be cm = 0.23213 m s−1.

Following our example (ε = 0.5 and n = 4, m ≈ 0.932), we find that the wavenumber
and the corrected angular frequency are k = 356 m−1 and Ω = 81.7 s−1. These cor-
respond to a wavelength, corrected wave period, and a corrected phase speed/group
velocity of the entire group of: L = 0.0706 m, T = 0.308 s and c = cg = 0.230 m s−1.
Finally, the amplitude of the wave can be calculated to a = 0.00140 m.

5. Comparison to other results
The corrected angular frequency, Ω, from now on is assumed to have the general

form

Ω = ω − ωc, (5.1)

where ω is the angular frequency determined by the linear dispersion relation (2.1),
and ωc is a nonlinear correction to the angular frequency.
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For our weakly nonlinear solution (0 6 ε� 1), we found that the correction to the
angular frequency is given by

ωc =
(2− m)

2
qε2 (5.2)

(see (3.11)).
By combining (5.1) and the linear dispersion relation (2.1), and by assuming that

the corrected phase speed (c = Ω/k) has been normalized to 1, we obtain the equation

k3 − k2 + (α− 2ωc)k − ω2
c = 0, (5.3)

which is a nonlinear dispersion relationship.
Our weakly nonlinear calculations in § § 2, 3 and 4 are compatible with the following

approximation of (5.3):

k3 − k2 + (α− 2ωc)k = 0, (5.4)

which has three roots:

k′ = 0,
k′′
k′′′
}

=
1± (1− 4(α− 2ωc))

1/2

2
. (5.5)

In our solution α − 2ωc = α0 = 1
4

and k′′ = k′′′ = 1
2
. This is also the case for the

solution of Akylas et al. (1998).
Other authors have treated cases for which α−2ωc 6= α0 = 1

4
. The linearized version

of their solution yields

η = a′′ cos
(
k′′(x− ct))+ a′′′ cos

(
k′′′(x− ct)) , (5.6)

where k′′ k′′′ are given by (5.5). When a′′ = a′′′ = a0/2 this solution simplifies to

η = a0 cos (k0(x− ct)) cos (∆k(x− ct)) , (5.7)

where k0 = 1
2

and ∆k = (1− 4(α− ωc))1/2/2. The above solution is seen to be a
periodic solution with a carrier wavenumber of k0 and with a modulation wavenumber
of ∆k. Furthermore it is seen that the carrier wave and the modulation wave travel
at the same speed, as is the case for the periodic waves described in the previous
sections. When α = 2/9 and ωc = 0, k′′ = 1/3 and k′′′ = 2k′′ = 2/3 yield the
well-known Wilton’s ripple.

As Zufiria (1987) considers the Wilton’s ripple (α = 2/9) among other periodic
waves, we find it most probable that it is members of this family of periodic wave
forms on which his numerical study focuses. The periodic wave forms mentioned in
Dias (1994) are also members of this family of periodic solutions. However, further
investigation of this family of periodic waves falls outside the aims of this study.

6. Summary and concluding remarks
In the present note we have described periodic gravity–capillary wave forms

propagating near the minimum phase speed. These wave forms are obtained as
solutions to the governing Schrödinger-type equation, which was derived by Hogan
(1985) and used in Akylas et al. (1998).

These periodic wave forms are described by the three parameters ε, m and n, which
are the wave steepness, a parameter describing the form of the envelope and an integer
number of waves per modulation wavelength. Only two of these three parameter can
be chosen freely as shown in figure 1.

Knowing two out of these three parameters, the other wave characteristics like the
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wavenumber, the corrected angular frequency and the wave amplitude can be easily
determined according to figures 3 and 4 and the expression a = ε/k.

In the limits of the m-parameter (0 and 1) the periodic wave form simplifies into a
Stokes’ wave train and the solitary wave form described in e.g. Akylas et al. (1998),
respectively. The phase correction in terms of the function f requires, however, special
treatment in the limits of the m-parameter.

Finally we found that the periodic solutions described in the present note, and
the periodic solutions described in e.g. the numerical study of Zufiria (1987) most
probably are not of the same kind.

In 1992 Benjamin proposed an integro-differential equation for interfacial waves
in a two-fluid system where the interface is subject to capillarity effects; in 1996
Benjamin proved that this equation exhibited periodic solutions, but did not present
an explicit expression for these periodic solutions. As Akylas et al. (1998) reformulated
the integro-differential equation of Benjamin (1992) into a Schrödinger-type equation
similar to the one studied here, the periodic solution discussed in the present note
may turn out to be related to those mentioned by Benjamin (1996).

In this study we restricted ourselves to n (n integer) waves per modulation wave-
length, but extending the work to n (n integer) waves per N (N integer) modulation
wavelengths is a straightforward task. We also restricted ourselves to symmetric wave
forms, but the introduction of an arbitrary phase shift should be a straightforward
task for the periodic wave forms described here (0 < m < 1).

The financial support of the Danish National Research Foundation and of the
Minerva Center for Nonlinear Physics of Complex Systems, is greatly appreciated.
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