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ABSTRACT

The equilibrium spectra of unidirectional gravity—capillary waves are derived from the wave-action balance
equation. The calculations include nonlinear triad interactions, direct energy input from the wind, and viscous
dissipation. Known equilibrium spectra for short gravity waves, which interact with the capillary waves, are
taken as input. The results differ significantly from the standard power law solutions and indicate that the spectra
for gravity—capillary waves in an oceanic environment can be rather different from those obtained in laboratory

experiments.

1. Introduction

Better understanding of the statistical geometry of
the ocean surface on scales from a couple of meters
down to a few millimeters is crucial to the develop-
ment of modern oceanography. Short gravity waves,
waves in the gravity —capillary range, and ripples have
wavelengths comparable to those of the measuring
electromagnetic waves and serve as ‘‘mediators’’ in
remote sensing of wind fields, currents, and sea levels.
The statistical geometry of the free surface is inti-
mately related to the nonlinear dynamics of the wavy
flow field.

The dynamics of a homogeneous random wave field,
in the gravity—capillary regime, is conveniently de-
scribed by the balance of its action spectral density
N(k, 1), governed by

N Syt Si+S
at'_"nl d i

(1.1)
Here S stands for source or sink due to nonlinear
wave—wave interactions, dissipation by internal fric-
tion or small-scale breaking, and direct input from the
wind, respectively. In this paper it will be assumed: (i)
S, is dominated by triad interactions, (ii) S, is domi-
nated by viscous dissipation, (iii) S; has a linear de-
pendence on N and a quadratic dependence on the wind
friction velocity u,, and (iv) the equilibrium range
spectrum of short gravity waves N, is not affected by
the presence of the shorter gravity—capillary waves.
The appropriate expressions for S,;, S;, S;, and N,, as
given in Stiassnie et al. (1991), Phillips (1977, p. 51),
Plant (1982), and Phillips (1985), respectively, are:

(1) Su= 167T3ff{N(kl)N(kz)“N(k)[N(kl)+N(k2)]}
X[V(k, ki, k)12 (k — ki — ko) 6 (w(k) ~ w(ky) — w(ky))dk, dk,

+32r [ [ (V0N GO + NI - NN, )

X IV (ke ki, k)12 8(k + ky — ko) 6 (w(k) + w(ly) — w(ky))dk, dk,.

The wave frequency w is related to the wavenumber k

through the linear dispersion relation
w? = gk + sk, (1.3)
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(1.2)

where k = |k|, g is the gravitational acceleration and
s is the ratio between the surface tension and the density
of the water.

(i) S, = —4vk>N, (1.4)
where v is the kinematic viscosity of the water;
(iii) S; = 0.04k*u% cosxN/w, (1.5)



1094

where  is the angle between the propagation direction

of waves and the wind; and
(iv) N, ~ 0.012uk ™ cos®y, — g <x< -725
(1.6)

An equilibrium spectrum is defined as the stationary
solution of (1.1), (i.e., N/t = 0, where ¢ is the time).
Its existence is still an open question; this has not hin-
dered researchers from producing a few mathematical
as well as experimental presentations of its structure
(see Zhang 1995 and references therein). The best
founded results are those by Zakharov and Filonenko
(1966, 1967, hereafter ZF). Their exact mathematical
solutions of S,; = 0 [ for gravity waves the triad inter-
action expression (1.2) is replaced by the appropriate
quartet interaction term], for isotropic ‘‘pure’’ gravity
and isotropic pure capillary wave fields, [see also
Stiassnie et al. (1991)] are

N ke, (1.7)

where a = 23/g, or 4, for gravity waves and « = 17/4
for capillary waves. A rather practical definition for
pure gravity waves is A, > 6 cm, whereas for pure
capillary, one could take A\, < 2 mm, although ZF der-
ivations ignore these boundaries altogether. One cannot
extend the ZF method of solution, by taking into ac-
count simultaneously the effects of gravity and surface
tension, because the dispersion relation (1.3) is not a
homogeneous function of k£ anymore. Almost all re-
searchers straighten out with ZF and present results
similar to (1.7), with some variations in a.

It is well known that gravity waves and capillary
waves interact with each other. As an example, a group
of capillary waves 1-mm long interacts and exchanges
energy with a gravity wave 60 cm long. Actually the
group velocity of the former is equal to the phase ve-
locity of the latter. The present note is an attempt to
shed some light on this ‘‘cross boundary’” mechanism
and assess its significance. Unfortunately, the complex-
ity of the mathematical problem forces us to restrict the
treatment and study unidirectional wave fields (details
are given in section 2).

The mathematical solution is derived using two dif-
ferent methods in sections 3 and 4. The discrepancy
between our results and laboratory experiments is dis-
cussed in section 5.

2. Unidirectional wave fields

For unidirectional waves the system of equations that
results from the first couple of delta functions in (1.2):

k—k — k=0, wk)—wk)—wk,) =
2.1)
has a solution only when k = k,, where
ko= (2g/s)V% (2.2)

we denote this solution by kf”(k) k(+)(k).

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 26

However, the system that results from the second
couple of Delta functions in (1.2),

k+tki—k=0 wk)+wk)—whk)=0, (2.3)

has a solution for any k, denoted by ki (k),

(k) These solutlons are shown in Fig. 1. The val-
ues of k1+) k2 1n (1.2) are interchangeable but not
those of ki ’, k5~ . Integrating (1.2) yields

S = cOUNKTINGS) = N IN(kS)

+ N(ks™)1Vh(k — ko) + ¢ {N(ks)[N(k)
+ N(ki )1 — N(b)N (ki )}, (2.4)
where £ is the Heaviside unit function and
(+) (+) (+) 4, ()
kky 'k,
et = L P2 T (2.52)
wlC§1> - C$|
(=) (=) (=)
=) — TWW kkl k2 2.5h
Ty I

where C, = dw/dk is the group velocity. In the deri-
vation of (2.5) we have used the kernels V¢~ given in
Hogan et al. (1988).

The restriction to unidirectional fields does not affect
the expression for S, (1.4), but it reduces (1.5) by sub-
stituting x = 0 to
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FIG. 1. Gravity capillary sum (4) and difference (—) wave triads.
The row numbers are those in Table 1.
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S, = 0.04k*u%w™'N. (2.6)
Integrating (1.6) gives
N, = M/Z dxkN, ~ 0.02uzk™> = ¢,(klko) ™3,
kiko<1, ¢ =0.02uzks®. (2.7)

The assumption of unidirectionality transforms the
mathematical problem (1.1) from an integrodifferential
equatlon to a functional equatlon by replacing the ex-
pression (1.2) for S,; by Sy given in (2.4).

3. Discretized solution of the functional equation

In order to solve the functional equation
Sy+S;+8 =0 (3.1)

we use one (out of many) possible special sequences
of wavenumbers k given in the first column of Table
1. The existance of such sequence was pointed out by
van Gastel (1987).

Each row (from the third downward) of the table
includes an additional four wavenumbers that form sum
and difference triads together with the wavenumbers in
the first column. Note that k in a certain row was chosen
to be the same as k5~ 1n the preceding row and turns
out to be the same as k1 in the following one. Also
note that k1 and kz are both decreasing as one is
moving down the table. The five wavenumbers in the
fourth, fifth, and sixth rows are shown by [J, O, and A
in Fig. 1.

For each of the & in the first column in Table 1 except
the first two we apply (3.1), Wthh gives N (kz ) in

terms of the known N(k), N(k1 ) N(kl ) and
N(EST)Y:
N(k{T) = (4k2%(k)N(k)/c (k) + NNk )

+ ¢ (k) {N(ki )N (ks™)
— N(K)[N(k;™) + N(ks™)1} /e (k)1
(N(k) + N(k;7)), (3.2)
where
v¥ = v — 0.01ui/w. (3.3)

Note that N(k) and N (ki”) are already known from
applying (3.2) to the two preceding rows in the table,
whereas N(k{™) and N(k{*’) are assumed to be given
by the gravity wave expression (2.7). The application
of (3.1) to the first two rows in the table requires a
somewhat different treatment. In this case, we solve
two linear equations, which yield

N(0.85347k,)

_0.286522 ¢()(0.85347k) v*(0.28652k )
0.853472 ¢(7)(0.28652k,) *(0.85347k, )

X N(0.28652k,),

(3.4)
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TABLE 1. A sequence of interrelated wavenumber triads.

kiky kM kS, kP, kSO kg
0.286522 0.853478 —_ — 1.140000
0.853478 0.286522 — — 1.140000
1.140000 0.209529 0.286522 0.853478 1.349529
1.349529 0.174578 0.209529 1.140000 1.524107
1.524107 0.153170 0.174578 1.349529 1.677277
1.677277 0.138268 0.153170 1.524107 1.815544
1.815544 0.127102 0.138268 1.677277 1.942646
1.942646 0.118322 0.127102 1.815544 2.060969
2.060969 0.111178 0.118322 1.942646 2.172146
2.172146 0.105213 0.111178 2.060969 2277359
2.277359 0.100133 0.105213 2.172146 2.377491
2.377491 0.095737 0.100133 2.277359 2.473228
2.473228 0.091883 0.095737 . 2.377491 2.565111
2.565111 0.088467 0.091883 2473228 2.653578
2.653578 0.085413 0.088467 2.565111 2.738991
2.738991 0.082659 0.085413 2.653578 2.821649
2.821649 0.080159 0.082659 2.738991 2.501808
2.901808 0.077876 0.080159 2.821649 2.979684
2.979684 0.075780 0.077876 2.901808 3.055464

N(1.14ko) = (40%(0.28652ko)N(0.28652k)
X (0.28652k0)2/ ¢ (0.28652k,)
+ N(0.28652k¢)N(0.85347k) )/ (N(0.28652k)
+ N(0.85347k,)). (3.5)

Here again, we assume that N(0.28652%,) is given by
the gravity wave equilibrium spectrum (2.7).

The descretized solutions for various values of u,
are shown in Fig. 2. Accordmg to Donelan and Peirson
(1987), the expression for S; given in (2.6) fails at
small values of u,, which probably explains the un-
acceptable results for uy = 0.15 and 0.2 m s 1.

For all other values of uy, the curves for N(k) in
Fig. 2 have clear cutoffs. For values of k larger than
these cutoffs (3.2) produces negative values for N(k),
which is defined as a positive physical quantity. Note
that in plotting the curves of Fig. 2, we have used the
gravity wave spectrum (2.7) for k < 0.28652k,.

In the following section we convert the functional
equation into a differential equation for large values of
k and compare its solution with (3.2).

4. Asymptotic solution

Here we seek an asymptotic solution, valid for large
(klky), to
Su+Si+ S =0, (4.1)

where S, S,, and S; are given by (2.4), (1.4), and (2.6).
To this end, we use the following asymptotic expan-
sions. From (2.3) and (1.3)
_,  2k§ 25Kk} 2k2
Y= 2 Sy ks =k+

4 25k;
9k 729k’ Ok

729k
(4.2a,b)

k;
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FIG. 2. Wave action spectral density N(k), obtained from Eq. 3.2)
for different values of the shear velocity u,.
From (2.1) and (1.3) From (4.2d)
o 2k} 61kd 2k§ 61k}
kU= == kD =k -2 22 - 23 61k}
Ok " 729k Ok 729k NUG™) = Nk = (52 + 205 N (B)
(4.2¢,d)
From (2.7) and (4.2a) 2 4\2
- ; _ 1 (2k;  61kg "
N(ki ™) = Ny (ki) +3 (ﬁ + 729k3) N"(k). (4.3d)

(SN 5K i
~ N 2%, “Tez2 ) 3 From (2.5ab) and (4.2)
From (2.7) and (4.2¢)

(+) G g (5 9% \? 183k} ¢ = % (1 + ﬁg) ;
N(KS™) = R, (kS >=c1<5,;) (1 1o ) s \" R
From (4.2b) (430) ¢ = %{_3 (1 + g?g) . (44ab)
Ny = NGk + (%2) - 72259kkg3 )N'(k) Note that g4.3c,d) are Taylor expansions of N(k5™’)

, s and N(k;™) around N(k), respectively.
pi(Fe, Bk N 4 3c)  Substituting (4.2), (4.3), and (4.4) into (4.1) gives
2\ 9% = 729k° ' ' to leading order

20k3 2 8
{~27rk861<1 - m-ﬁ)zcw' + 5 mhECkN" — oI nkéNz}h(k ~ ko)

2k3 2 8
+ {27rk<3)c1<1 - 81k02>k2N, + 5 wkic,kN" + m ﬂkSNz} — 4Uk®N + 0.04u%k'*N/sV?. (4.5)
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For k > k,, there is a mutual cancellation of some of
the terms in (4.5), which now gives

KN" + N' + (—vk* + 0.01u%k'?/s'*)N = 0.

71'C1k(5)
(4.6)

Equation (4.6) has the following solutions in terms of
confluent hypergeometric functions M and U (see
Abramowitz and Stegan 1972).

N = {alM(d, 1, &]}3/2) + azU(d, 1, &123/2)}
X exp(=ak>?/2), (4.7)
where

k=kiky, &= m(vko/0.027uy)"%;
A

a= % — 0.01u2/(0.04mgvu*)'2, (4.8)

In Figs. 3a—c we present a comparison between the
numerical results from (3.2) — (3.5) and the asymptotic
analytical expression (4.7). The overall agreement is
very encouraging and increases our confidence in the
mathematical approach. The caption of each figure in-
cludes the numerical values of the coefficients q,, a, of
(4.7) as well as the coordinates of the two adjoining
points (k,, N,) and (k,, N,) on the numerical graphs
through which the asymptotic graphs (4.7) were forced
to pass.

The additional branch in Fig. 3c is physically mean-
ingless; it is shown only in order to demonstrate the
mathematical equivalence of the different methods of
solution given in this and the preceding section.

Note that the equilibrium spectra (4.7) are a result
of a balance between all three source terms (S,;, S,
and S;), which turn out to be of equal importance. Pre-
vious authors made different and contradicting as-
sumptions regarding the relative importance of the
source terms. Donelan and Pierson (1987) set S,, = 0,
whereas Glazman (1995) assumed a purely inertial
cascade and takes S; = S; = O (but includes higher
order nonlinearities).

5. Discrepancy with laboratory experiments

Our results differ significantly from the standard
power law ‘‘tails,”” which were obtained in wave—wind
flume experiments by Jahne and Riemer (1990),
Hwang et al. (1993), and Zhang (1994). This discrep-
ancy is probably related to the fact that the short gravity
waves (in the wavelength range of 10 cm to 1 m) spec-
tra in those experiments are very far from the fully
developed state (2.7), which is the most dominant in-
put in our calculations. We claim that our calculations
indicate that the spectra for gravity—capillary waves in
an oceanic environment are probably different than
those obtained in laboratory experiments. To check
the above argument we have solved the inviscid case
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FiG. 3. Wave action spectral density. Comparison between the dis-
cretized solution of the functional equation (dashed) and the asymp-
totic solution of the differential equation (solid) for (a) uy, = 0.2, (b)
uy = 0.25, and (c) uy = 0.5m s~ L.

A

Su = 0, for large (k/k,), ignoring the effects of damp-
ing and wind input altogether.

For the inviscid problem, we require that each of the
expressions in the curly parentheses in (4.5) should
vanish, which yields for large (k/k,)

ko
81
to leading order. Note that (5.1) is satisfied by

_ 4k
N_cl/[1+81<1 k” k>ko (52)

The above is true for Ng given by (2.7); however, for

Ck*N' + —2 N2 = 0 (5.1)
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other N,, say N, = n(k), we have obtained instead of
(5.1)

2k3 Ok
— IN' + —= N?* =0, 5.3
”< 9k> N =0 ©3)
which has the solution
2 2ko/9
9 2k3/9%
k=ky (5.4)

where Ny = N(ky).

The last result seems to be more applicable for com-
parisons with laboratory tests where (2.7) is usually
not attained. Note that for n « k%, and k < k,, where
k, is the pick of the spectrum, the asymptotic result for
large k, that is, for (k > 2k3/9k,) is

kO 2+a
o« [ 20

N < s ) |

Equation (5.5) with « = 1.25 gives for very short

waves, the same power law as ZF obtained for pure

capillary waves, albeit under different physical as-
sumptions.

To summarize, the results we found differ signifi-

cantly from those obtained in wind wave tank experi-

ments. The results in Fig. 2 are characterized by a sharp

cutoff and not by an algebraic decay law. This discrep-
ancy leaves several open questions:

(5.5)

1) The short gravity waves (10 cm~—1 m) in the ex-
periments by Jahne and Riemer (1990), Hwang et al.
(1993), and Zhang (1994) are far from the fully de-
veloped state that was assumed in the present compu-
tations. Is this the main reason? We claim that it prob-
ably is. Equation (5.5) indicates that the present model
can produce spectra with a power law decay structure.
Full details about the measured spectra are needed to
prove this hypothesis.

2) How suitable is the expression S; for the direct
wind input, given in Eq. (1.5)? We do not know; how-
ever, the present model could easily be used to check
other alternatives.

3) The negative values of N, indicated in Figs. 3b—
¢, may raise some doubt regarding the concept of equi-
librium spectra. It may well be that we are looking for
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something that does not exist. This is a rather difficult
issue and beyond the scope of this short note.

4) The present model is for unidirectional wave
fields only, which may raise some doubt regarding its
physicality. Is this the main reason for the discrepancy?
We do not know; to answer this question one needs to
develop a rather cumbersome code and solve the full
two-dimensional problem.
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