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Abstract —The fractal dimensions, D, and the multifractal singularity distribution functions, F(«) for
Riemann’s ‘non-differentiable’ functions are calculated numerically and presented here for the first
time. The new fractal results are discussed through comparison with some analytically known
properties of Riemann’s functions. Almost all analytical properties are revealed in our numerical
results.

1. INTRODUCTION

In a recent paper, Holschneider and Tchamitchian (1991) survey and extend the known
properties of Riemann’s ‘non-differentiable’ function

R,(x) = 3 m ™, for u> 1 (1)
m=1

The original function of Riemann is the imaginary part of R;. Holschneider and
Tchamitchian use wavelet transform techniques to show that the function R, has the
following properties.

(1) R, is not differentiable at any irrational point for any u € G,2

2) R satisfies uniformly a Holder condition with regularity exponent (u—3) for e G,3).

(3) R is dlfferentlable on the dense set of points given by x = 2P + 1)/2Q0 + 1), P, O
1ntegers for u > 3

For technical details and for a historical review of the topic the reader is referred to
Holschneider and Tchamitchian [1].

The above properties assure the multifractal nature of the graphs of the real and
imaginary parts of R,, denoted by C and §:

Cux) = 5 m™cos(wm’x),  for u>j; (2)

m=1
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S, (x) = > m sin(mm?x),  for u> 3. 3)
m=1
Properties (1) and (3) demonstrate the diversity in the local structure of Riemann’s
function. One can express the local behaviour in terms of a Lipschitz—Hoélder (LH)
exponent «(x). This LH exponent « (at a point x) is related to the maximum range A of a
continuous function y(x) at the vicinity of the point x through:

lim A(x, 8) = 6 (4)

where
A(x, 8) = suply(?) — y(w)] forx<t,u<x+ 6. (4a)
The interpretation of the o« sign in (4) is rather wide. One may replace (4) by:
gi%A(x, 6) = ¢(x, Ind).o (5)

where ¢ can sometimes be a converging Fourier series of (Ind) with x dependent
coefficients; thus ¢ can oscillate wildly as & approaches zero. An example of this type of
behaviour for the Weierstrass function near the origin is shown in West [2, p. 78].

In this note, we concentrate on numerical calculations of some fractal properties of C
and S, by using a box counting technique which we explain in Section 2. The results and
their interpretation are given in Section 3 in light of the above properties.

2. NUMERICAL PROCEDURE

We start by dividing the domain [0, 2] of the x-axis into n.,, equal segments of length

— -1
6min - 2nmax ’

and denote
x]- = jémin: ] = 0, 1, ooy Bpaxe

Then we truncate (2) and (3) at some large m so that m™ = ¢ and calculate values C(x;)
(or S(x;)) at the above points. These values will serve as our data base for all further
computations. For the present note we choose ¢ = 0.001 and n,,,, = 2048 =21,

In the sequel analyses we use 6-by-0 squares and use the notation d— 0. In practice, we
have used the following decreasing series of & values: 6=1, 271, 272, ..., 279 =268_,,.
From (4a) we can see that the number of J-by-& squares which is needed to cover any
function between x; and x; + 8, where x; = id, is A(x;, 6)/8. Note that i attains values from
0 to (n — 1) where n = 6"'. Thus, the total number of squares N(8) which is needed to
completely cover the function is E,-":_OlA(x,-, 8)/8. The box-counting dimension D, is defined
and exists only when the following measure M is finite:

n—1

M = lim 6P~ };0 A(x;, 9). (6)

D, is obtained from the slope of the graph of log N, where N(8) = 6 {> ' A(x;, 9)},
plotted as a function of —log {d} for small enough values of 6.

As already mentioned, the local behaviour of the function y(x), in terms of its
Lipschitz—Holder (LH) exponent «, is represented by:

A(x;, 0) o= &% (7)
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where 1 — « determines the singularity strength. For complicated functions like C, (and S,)
one would expect to have different values of « at different locations. Actually, C, is
characterized by a union of an infinite number of subsets each related to a typical
singularity o and supported on a dust in [0, 2] with a fractal dimension F(«). The F(«)
curve which summarizes the multifractal properties, is our main goal.

We assume that the number of squares which is needed to cover the dusts in [0, 2] with

LH exponent between « and « + da is
N(a, 8) < §F*dqa. (8)

A more general measure than that in (6) is the g-measure, which is given by

n—1

M, = lim 5@
g = lim gou 9)

where 7(q) are sometimes called the ‘mass exponents’ and y;, which denotes the relative
weight in the ith segment, is defined as

w = A, a)/j A, 6). (10)

Note that one can compute ..o u? for decreasing values of 8. The plot log N(8, g) where
N(8,q) = {D,/gul} against —log {8} serves to obtain 7(g), for a given q.

From equations (6), (7) and (10), we get an expression for the relative weight in a
segment as a function of its LH exponent and of the box-counting dimension:

W, 8) o« ¥+, (11)

Using equations (8) and (11) we can write the g-measure in the form

M oc gi% daé—F(WH(vﬂ'Db Dg+u(q) (12)

The integral in equation (12) is calculated by the steepest descent approximation. In the
limit of small J this integral is dominated by
Mq o 5—F(w)+(a+Db——1)q+r(q); o = a,(q) (13)

where « in equation (13) is the solution of F'(«)= ¢, provided that F"(a)<0. The
measure M, in equation (13) is finite only when

F(o) = (o« + D, — 1)q + 1(q). (14)
Taking the derivative of equation (14) with respect to g, we find
o =1- D, — dt(q)/dq. (15)

The couple of equations (14) and (15) enables us to calculate the F(a) curve from the mass
exponents curve 7(q) and the fractal dimensions D, which are already known.

3. RESULTS AND DISCUSSION

The fractal dimensions D, of the curves C, and S, were calculated first and are
presented in Fig. 1(a). Both curves in this figure represent monotically decreasing func-
tions of u. The fractal dimension of C,, given by the open circles, decreases from
D,=151%0.03 at u=0.5, to D, =1£0.03 at p=1.5. The fractal dimension of S,
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denoted by full circles, is somewhat larger; it decreases from D, = 1.54 £ 0.03 at u=0.5 to
D, =1+%0.03 at u=1.5. Note that in cases where the computed values of D, for C, and
S, were the same, only open circles are presented.

As already mentioned, D, is obtained from the slope of the graph log, N(6) plotted as a
function of —log, (8). To demonstrate this procedure, we give in Fig. 1(b) the results for
Co.7s, Cio and Cy,5; other results, for different u's or for S, are of about the same quality.
For the calculation of the best straight lines in Fig. 1(b) we have ignored the extreme data
points which correspond to § =1 and 6 = 27°. In Fig. 2(a) and (b) we show the multifractal
singularity distribution F(«) for C, and S, respectively, and u=0.75, 1.0, 1.25. Note that
o <1 is related to the set of points on the segment 0 <x <2 where the function has no
derivative (i.e. the derivative — & ) whereas o > 1 is related to points with a vanishing
derivative. The left branches of C, (in Fig. 2(a)), are rather similar to their counterparts
for S, (in Fig. 2(b)); whereas the right branches are significantly different. This difference
is also evident from comparing Fig. 2(c) and (d) which were used to calculate the ‘mass
exponents’ 7(g) given by the slopes of the straight lines. The right branch of a F(«) curve
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represents small values of the range A, see (4), and these are more sensitive to the
descretization and to cut off errors than the left branch. To the best of our knowledge the
behaviour of D, and F(«) for Riemann’s ‘non-differentiable’ functions are presented here
for the first time.

Next we will examine the above results in light of the three properties of Riemann’s
functions mentioned in our Introduction.

Property 1. R, is not differentiable at any irrational point for any u € (3,3

The most probable singularity of each of the curves in Fig. 2(a) and (b) is given by ay, the
value of the LH exponent « for which F(«) = 1. The variation of «; as a function of u, for
C, and S, is given in Fig. 3. From this figure it is evident that oy <1 for pu< 1.25, for
both €, and S, which assures their being non-differentiable almost everywhere; in
accordance with Property 1.
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Property 2. R, satisfies uniformly a Holder condition with regularity exponent (u— 1) for
He (2’ 2

The strongest singularity is given by the smallest value of the LH exponent, denoted
Oin- 1N Flg 4 we show the variation of Omin as a function of u, as well as the line
o = u— 3. Property 2 requires @, = u — 3, which our calculation found to be true only for
u<1.0. At present, we have no explanation for the discrepancy at u > 1.

Property 3. R, is dlfferentlable on the dense set of points given by x = (2P + 1)(2Q + 1),
P, Q integers for U > 7

This property is related to the fact that the F(«) curves in Fig. 2(a) and (b) extend to
a > 1. The frequency of occurrence of these regular points is related to F, = F(a = 1), to
be called the dimension of the dust of regular points and shown in Fig. 5. From the figure
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one can see that our numerical procedure indicates that regular points exist for x> 0.65

(they do not exist for 4 < 0.65 where F, = 0); which is probably related to the above u = 2

value.
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