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ABSTRACT

Nonlinear energy transfer in the wave spectrum is very important in the shoaling region. Existing
theories are limited to weakly dispersive situations (i.e. shallow water or narrow spectrum ).

A nonlinear evolution equation for shoaling gravity waves is derived, describing the process all the
way from deep to shallow water. The slope of the bottom is taken to be smaller, or of the order of the
wave steepness (€). The waves are assumed unidirectional for simplicity. The shoaling domain ex-
tends up to, and excluding, the first line of breaking of the waves. Reflection by the shore is neglected.
Dispersion is fully accounted for.

The model equation includes terms due to quadratic interactions, which are effective over charac-
teristic time and spatial scales of order (7/¢) and (A/¢€), respectively, where 4 and T are wavelength
and period at the spectral peak. In the limit of shallow water, the quadratic interaction model tends
to the Boussinesq model.

By discretizing the wave spectrum, mixed initial and boundary value problems may be computed.
The assumption of the existence of a steady state, transforms the problem into a boundary value one.
For this case, solutions for a single triad of waves describing the subharmonic generation and for a
full discretized spectrum were computed. The results are compared and found to be in good agree-
ment with laboratory and field measurements. The model can be extended to directionally spread
spectra and two dimensional bathymetry.

1. INTRODUCTION

As ocean waves shoal, the wave field undergoes substantial evolution from
its deep water state. Narrow-band spectra develop secondary peaks at super-
harmonics of the peak frequency; broadband spectra show an increase of en-
ergy over a wide range of frequencies. A significant amount of energy is trans-
ferred to the long wave band. Phase velocities depart substantially from those
predicted by the linear dispersion relation, and the shapes of individual waves
change from almost symmetrical in deep water to ones with sharp crests and
broad, flat troughs in shallow water.

Forecasting the wave spectrum in the shoaling region is of great importance
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to coastal and offshore engineering. The characteristic wave energy transfer
to long period waves is associated with the observed phenomena of surf-beats
and harbor oscillations which occur at low frequencies. Moored structures
can also be resonated by the long waves. Edge waves, wave breaking and long-
shore currents and the resulting sediment transport are all sensitive to the
form of the shoaled waves. ‘

Linear theory, often used as a basis for shoaling models, does not predict
most of these changes. Superposition of motions with different frequencies is
used to satisfy arbitrary conditions at a given point. Locally, the wave number
of each mode satisfies the linear dispersion relation. Separate components
evolve separately, according to the conservation of energy equation at the
lowest order. Although results proved to be roughly consistent (with errors
up to 20%) with observations of r.m.s. shoaling waveheights, the most inter-
esting features of the evolution described above, i.e. the effects of nonlinear
energy transfer across the spectrum, are beyond the reach of the linear theory.

Considerable progress has been made in the last decade in the study of par-
ticular nonlinear evolution equations such as the Schreedinger equation,
Boussinesq and KdV-type equations.

Attempts to incorporate the effects of nonlinear interactions in shoaling
models were also being made in two main directions: one based on Stokes
expansions, involving cubic interactions, leading to Schreedinger type equa-
tions; the second based on the assumption of shallow water, involving qua-
dratic interactions and leading to Boussinesg-type equations.

Starting from previous work in similar nonlinear problems for the flat bot-
tom case (Davey and Stewartson, 1974), Djordjevic and Redekopp (1978)
used Stokes-type expansions of the velocity potential and free surface dis-
placement to derive a cubic nonlinear evolution equation describing the evo-
lution of the envelope of a gravity wave packet over uneven bottom.

Using more explicit conditions of a narrow spectrum and thus, weak dis-
persion, Stiassnie (1983) derived a similar equation starting from Whi-
tham’s set of modulation equations (Whitham, 1974). More recently, Suh et
al. (1990) obtained an evolution equation for Stokes waves over mildly vary-
ing topography, including refraction, diffraction and nonlinear cubic inter-
actions. In their work, the equations governing the water waves motion are
perturbed using the method of multiple scales and Stokes expansions are used
for the velocity potential and the free surface displacement.

In all these works the bottom slope is second order with respect to the wave
steepness, the water is rather deep, dispersion is weak, and cubic interactions
are the dominant energy exchange mechanism. Secondary waves are locked
waves, as is the case in Laing (1986) where no energy exchange takes place.

Generalizations of Boussinesq and KdV equations to include the effects of
sloping bottom were obtained by Peregrine (1967) and Grimshaw (1970).
Using as a starting point the equation derived by Peregrine for the depth av-
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eraged velocity potential and free surface displacement, Freilich and Guza
(1984) derived two nonlinear models for the shoaling of unidirectional sur-
face gravity waves, in the frequency domain. The models are valid in shallow
water, and are weakly dispersive. The bottom slope is taken to be of the same
order as the wave steepness.

All the above-mentioned works offer a description of the shoaling process
restricted to a single mechanism of energy exchange - either cubic or qua-
dratic interactions. In either case, dispersion is taken to be weak.

The shoaling process may be regarded as a transition process from cubic
near resonance to quadratic near resonance. In deep water, cubic near reso-
nance is dominant, with effects over characteristic time and spatial scales of
order O(T/€*), O(A/€?*), 4 and T being the wavelength and period of the
spectral peak. Quadratic near resonance dominates the energy exchange in
shallow water, effective over scales of order O(7T/€), O(1/€¢). As the water
becomes shallow, quadratic resonance is approached, the second order forced
waves grow and become free waves. The interaction is stronger and the spec-
trum widens. The spatial scale of interest here is 1/¢, hence cubic interaction
1s insignificant.

The aim of the present study is to derive an evolution equation describing
the shoaling of wide spectra all the way from deep into shallow water, taking
into account the full dispersion of the waves. For simplicity we are presenting
a model for unidirectional waves at normal incidence on parallel depth con-
tours. Extension to oblique incidence is straightforward. The cases of direc-
tionally spread spectra and more complex bathymetry can also be treated based
on the present analysis. '

In Section 2 we give the formulation of the problem. In Section 3 we derive
the evolution equation. Section 4 presents the discretized equation and com-
pares the model with Freilich and Guza’s (1984 ) shallow water model. Ex-
amples of numerical integrations for a single triad of waves, and comparisons
with laboratory experiments and field measurements are given in Sections 5
and 6, respectively.

2. FORMULATION OF THE PROBLEM

The equations governing the irrotational flow of an inviscid incompressible
flurd with a free surface are:

Ap=0 forh<z<p (2.1)
¢:+VHh'VH¢=O forz=—nh (22)
Bu+80-+ (V9)? +4V4-V[(Vg)?]=0 forz=n (2.3)

o, +gn+i(Vp)*=0 forz=n (2.4)
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Fig. 1. The shoaling domain.

where V and Vy are the three-dimensional and horizontal gradient operators

and ¢(x,y,z,t), n(x,y,t) and h(x,y) are the velocity potential, the free surface

displacement and the water depth, respectively
The reference frame has the origin at the still water level, in the deep water
region, with the z axis pointing upwards, and the x axis pointing towards the

shore (Fig. 1).

In order to derive an evolution equation for the shoaling of gravity waves,
we 1mpose the following restrictions:

(1) All depth contours are parallel to the shore-line. The waves propagate
normally to the shore-line. Thus, the lateral coordinate y becomes irrel-
evant and may be dropped.

(i1) The shoaling domain under consideration extends from deep into shal-
low water, such that everywhere in the domain

kh=0(1) : (2.5)

where & is a typical wavenumber. The full dispersion of the waves has to
be taken into account.

(111) The small wave steepness parameter ¢ is introduced and it is assumed
that wave breaking does not occur in this domain:

ka=0(¢); €< (2.6)

where a is the amplitude of the wave.
(1v) The bottom slope is taken to be of the same order as the wave steepness:

h.=0(¢) (2.7)

(v) Last, to simplify the problem, the reflected wave field is assumed to be
of higher order than that taken into account here.

Next, the second “lateral” horizontal variable y is dropped, the governing
equations (2.1-2.4) are scaled using relations (2.5-2 .7) and terms of order
O(€*) are neglected. For scaling purposes, the following nondimensional
variables (primed) are introduced:
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X' =kox; z'=koz; h' =koh; t =wgt

1 Wo
"'=—1n; = 2.8
n aon, ¢ 20s (2.8)
woz—gko

ko, ag and w, are characteristic values for the wavenumber, amplitude and
frequency of the wave field. The resulting dimensionless system of equations,
after dropping the primes, is:

Prx T0--=0 for —h<z<en (2.9)
¢-+eh g, =0 forz=—h (2.10)
Gu+o-+e[(9.)7+ (9-)°1,=0(e*) forz=en (2.11)
B +n+ i€l (9)°+ (9-)°]1=0 for z=en (2.12)

The surface n on which the last two boundary conditions are given is an
unknown quantity. It is also a small perturbation of the still water level, and
thus, a Taylor expansion about this level (z=0) is usually used to circumvent
the above difficulty. The expansions for the boundary conditions at the free
surface are:

Gut+ o+ enlp,+0.1-+€[(6:)+(4:)°],=0(e?) forz=0 (2.13)
G N+ end. +3€[(8:)°+ (4:)’1=0(€?) forz=0 (2.14)

The last relation may be used to eliminate n from the first, and after some
simple algebra, system (2.9-2.12) becomes:

Prx T P =0 for —h<z<0 (2.13)
¢-+en o, =0 forz=—h (2.16)
Gut@-=€[—3(0:)°=5(9:)°+0.0- ], —€($:8:) +O(€?)

for z=0 (2.17)
n=—0,+ebP.—3€[($)*7 (9:)°]1+0(e?)  forz=0 (2.18)

The wave number spectrum representation is generally used to describe the
evolution of a wave field. For the sloped bottom case it may also be used,
together with a multiple scale approach, provided that the slope is small
enough, but at the numerical integration stage problems arise in selecting the
modes that enter the nonlinear interactions, due to the variation of the wave
number with depth. To avoid this, the frequency domain representation will
be used. Also, to account for the slow modulations induced by the depth vari-
ation and nonlinear interactions, slow variables are introduced:
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X, =€X, [ =¢t (2.19)

These slow variables are regarded formally as independent of the fast vari-
ables x and ¢. Accordingly, the derivatives become

d 9 0 d 9 0
22 A A 2.2
ok oy B 5mE (2:20)

The time Fourier transform of ¢ is defined as:
D)= [ plut)e

LT |

¢([’[‘)=fz J D(w,t,)e"dw (2.21)
With these, the Fourier transforms of Egs. (2.15-2.17), to order O(e) are:
D +eD +eD,  +D..=0(e?) forh<z<0 (2.22)
D, +¢eh,, D, =0(€?) forz=—nh (2.23)

—0* P+ 260D, + P. = ——%?J J {@x(wl>¢x(a)2)

+P.(w,) D () +2w, w0, P(w,) D.(w,)

+2%[®\'(w1)(p(602) ]x}é(w—a)l —wz)dwldw2+0(62) for z=0

(2.24)

The system of Egs. (2.22-2.24) is the starting point for the derivation of
the evolution equation for shoaling gravity waves. It describes the evolution
of the frequency spectrum @. The linear problem is represented by the left
hand sides of the equations, while nonlinear interaction among the modes is
accounted for by the nonlinear convolution integral on the right hand side of
Eq. (2.24).

In the sequel, in order to make the formulae more easy to follow, the vari-
ables on which the functions depend will generally not appear. They will be
indicated if significant, and only where confusion may arise.

3. DERIVATION OF THE EVOLUTION EQUATION

In order to obtain a single evolution equation, we shall first look for a so-
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lution of the Laplace equation (2.22) together with the bottom boundary
condition (2.23). The solution for this problem may be formally written as a
superposition of two different kinds of terms: one representing the free waves.
the other associated with locked waves.

The free wave part of @(w) has the form:

F('xl ):’watl )e—i()

where
szk(xl,a))dx; k real (3.1)
0

where k is the free wave number and satisfies the linear dispersion relation:
w>=ktanh (kh) (3.2)

The free wave (Eqgs. 3.1-3.2) is the solution of the linear approximation of

The locked wave terms generated by two forcing free waves have the form:

7 — 6
F (-xl ,Z,Cl),[l Q0 7w2)e !

he

g =Jk’ (x,,0,,w,)dx; Kk'real (3.3)

0

where k&’ does not satisfy the linear dispersion relation (3.2). The frequencies
w,, W, correspond to the forcing free waves. Locked waves forced by more
than two free waves will not be taken into account, since they correspond to
higher order nonlinear terms (cubic interactions) neglected in this study.

A measure of the departure of Eq. (3.3) from the free wave character is
given by the detuning parameter:

p=(k'—k)/k (3.4)

where k is given by Eq. (3.2) with w= w;+ w,. In deep water u is of order
unity and the locked wave is of second order. As the depth decreases, U ap-
proaches zero, resonance conditions are approached and the locked wave be-
comes in effect a first order free wave. Thus, the order of the locked wave will
be taken in the sequel to be:

F'=0(e/u) (3.5)

all along the shoaling region.
Using the fact that the locked waves arise in deep water as forced waves
given by the convolution integrals in Eq. (2.24), we shall look for the solution



36 Y.AGNON ET AL.

of the Laplace equation with the bottom boundary condition (Egs. 2.22 and
2.23) in the form:

O=F(x,,z,w,t;)e "+’
esz(xl,w)dx (3.6)
0

w?=ktanh (kh)

where @’ denotes the locked wave associated with the frequency w and is
given by:

qj’ :J‘ J‘ F (X_‘l7zaw7[l » Wy 70)2)8—[9’5(@_601 —wl)dwlde

9’ =Jk’ (Xp,0,wy)dx; k' (x,,0,,w,) =k(x,,w,,w) (3.7)
0

In view of the linearity of the present problem, upon substitution of Egs.
(3.6) and (3.7) into Egs. (2.22) and (2.23), two systems of equations hav-
ing similar form may be separated, one for the free wave:

F..—k*F—¢i(kF),, —eikF., =0(€e?) for —h<z<0
F.—¢€ikh F=0(€?) forz—h

(3.8)

and one for the locked wave, obtained by replacing k and F by k' and F’,
respectively, in Eq. (3.8). The details of solving this system are given in the
Appendix. The solution for the velocity potential is:

- (D(xl)@atl) . _w(xl:a%[l) —i6
—[“cosh(kh) cosh k(z+h)+eD(k,z) __cosh(kh) }e

T ¢ ' (xl 70)7[1 ywl ,C()'_)) 1 - . Wl (-xl Jwatl :wl ,Cl)z))}
+J_f [ cosh(k'h) cosh(k'(z+4)) +eD(k ’A)< cosh(k'h)
e 5 (w—w, —w,)dw,dw, (3.9)

where ¢ and ¢’ are unknown functions, and the operator D(k,z) is defined
by:

d
dx,

D(k,z) —_-i[(z+h)sinh(k(z+h)) +%(k(z+h)2)xlcosh k(z—i—h):I (3.10)
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and
_aD

== g
At this stage, it should be noted that, to first order, the potential on (z=0)

1S:

¢I:=o=(p(xl,w,t1)e“""+J f @' (X1,0,0,0,,w:)e~" §(w—w, —w,)dw, dw,

(3.11)

and is equal, to an error of O(¢), to the free surface velocity potential, de-
noted here by ¥

SU=¢[z=er7=gblz:O-}_O(e) (312)

Next, we substitute the solution (3.9-3.10) into the surface boundary con-
dition (2.24). The contribution of the free waves to the left hand side of Eq.
(2.24) is:

—wz[qo+ 6D(k,0)<*cosh¢(kh))}6—19—{—2610)% e~

+[¢ktanh(kh)+eDZ(k,0)<ﬁ@—)>}e—f9 (3.13)

The contribution of the “locked” waves to the left hand side of Eq. (2.24)

1S:

PR ’ ' w’ —ig’ _ .
w J J [go +eD(k ,O)(————Cosh(k,h)ﬂe d(w—w, —w,)dw,dw,

+26iwj J g, e”Y5(w—w, —w,)dw, dw,

—Cc0

+J J [go’k’tanh(k’h)+eDz(k’,0)(a);H§%'k_/h_)>:le_ie,

(w—w, —w,)dw, dw, (3.14)
We now make use of the linear dispersion relation (3.2), denote also:

Q*=k'tanh (k'h) (3.15)
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and expand in Taylor series about k:

D(k’,O)(——wl—>—_—D(k,O)<EE—¢I—,>+O(u)

cosh (k' h) sh{ni)

Py

7

Y A A
D-(k ’O)<cosh(k’h)>_D:(k’0)<cosh(kh)>+O(ﬂ) (3.16)

With these, gathering together the relations (3.13) and (3.14), we obtain
for the left hand side of Eq. (2.24) the expression:

2eiw[(pe“9+J J p'e 5 (w—w, —w,)dw, dw.], —€ew>D(k,0)

I T
.{m[we_le+J J- g[)'e—lgé(a)—wl —wz)dwldwz]}

. 1 — i JT 1 a— i
+eD-(k,0) {——_cosh(kh) [pe~ "+ p'e”d(w—w, —w,) dw;dw,]
+J J- (P —w?)p' e U5 (w—w, —w,)dw,dw, (3.17)

We may use now Eq. (3.12), setting
SP:qae""’-i—J J p'e Y5 (w—w, —w,)dw,dw, +0(€) (3.18)

and upon substitution into Eq. (3.17) obtain for the left hand side of Eq.
(2.24):

261’@‘]’,1+e[—w2D(k,0)+D:(k,O)]<&—m§—kh)>
+J J (R*~w?)p' e ¥(w—w, —w,)dw,dw,  (3.19)

But, by way of simple algebra, it may be shown that:

1 d
—w?D(k,0 . ———— =] — .
[—w v (k,0)+D_(k,0)] cosh (k7) lw[ng,rl+2Cgaxl] (3.20)
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where Cy=(9k/d;gu) ' is the group velocity of the free wave, so that the
expression (3.19) becomes:

26“‘)[ yjtl +%Cg,x1 Y+ Cg gjxx ]
+J J (2°—w?)p' e (w—w, —wy)dw,dw, (3.21)

Finally, further simplification may be made. A Taylor expansion of £2° about
k gives:

Q2 —w?=2wC, (k' —k) +0(1?) o (3.22)

We shall replace £° by this expression and gather the last term and the term
containing the derivative of ¥in Eq. (3.21):

2ing{egox,e"9+J J [eg., — (k' =K)p' le ¥ (w—w, —wz)dwlda)z}

=2ia)Cge"'9{e(pm +J J [epl, —i(k'=k)p' 1e "= (w—w, —wz)da)ldwz}

-—c0

+0O(eu) (3.23)
We may return now to a single scale spatial variable x, and write:
¥ (x,w,t;) =A(x,w,t )e""® (3.24)

It may be seen that the expression in the last curled brackets in Eq. (3.23) is
the spatial derivative of 4. The left hand side of Eq. (2.24) then takes the
simple form:

2e¢iw (A, +3Co A+ Cod)e™ " (3.25)

In dealing with the second order nonlinear right hand side of Eq. (2.24),
only the leading order free and locked wave components need to be taken into
account:

D cosh k(Z+/’l) e_i9+J J , cosh k’(Z+h) e—if

- cosh kh cosh k' h (3.26)

o(w—w, —w,)dw,dw, +0(¢)

For the derivatives of @ we may write, using Egs. (3.11), (3.12) and (3.5):
D.|.co=w*FP+0(¢) (3.27)
D, |._o=—1k¥P+O(¢) (3.28)
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and returning to Eq. (2.24) we obtain for its right hand side:
2eia)J J V(w,w,,w,)P(w,)P(w:)o(w—w, —w,)dw, dw, (3.29)

where the kernel V" brought to a symmetric form, is given by:
5 W

Viw,w,,w,) =%{[2k1k2 + (cz)‘1 a)2)2~1—l’cl~w—‘~}—k%%—a)za)I wzJ
(3.30)
It is readily seen that the kernel has the properties:
V(w,w,,w,;)=V(w,w,,w,)
V(i—w,—w,—w,y) =V(w,w,,w) (3.31)

Finally, collecting together Egs. (3.25), (3.29) and (3.30) we obtain the
equation:

A (@) +3C A(w)+Cod (w)
:j J V(w,w,,w)A(w,)A(wy)e™ 9= 5 (w—w, —w,)dw, dw,

+O (€%, ue) ' (3.32)

Equation (3.32), the main result of this study, is an evolution equation, in
the frequency domain, for shoaling gravity wave fields of arbitrary spectra,
valid for a domain that extends all the way from deep to shallow water. As
seen from the approximations used in Egs. (3.16) and (3.22), over time and
length scales of order O (e~!), it describes the free waves with a relative error
of order O (¢) and the locked waves with a relative error of O (u).

From Eq. (3.32) we may derive the next order approximation to the linear
theory energy conservation equation. By multiplying Eq. (3.32) by the com-
plex conjugate of 4 and adding to the result its complex conjugate and replac-
ing A by the modal wave amplitude a:

a=—iwA (3.33)

we obtain the equation:

(1212 + (G 1alP)e= = | | 221220 (0,0, ) Im[a (@)@ a(y)e0-7=22)

S(w—w, —w,)dw, dw, (3.34)
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where Im[ ] 1s the imaginary part, and the asterisk denotes the complex
conjugate.

The left-hand side of Eq. (3.34) represents translation of the wave energy.
which has density |a|?/2. The right-hand side is due to nonlinear (quadratic)
interaction. Its role is to redistribute the energy across the spectrum. In order

to carry out computations, we shall now discretize the evolution equation
(3.32).

4. DISCRETIZATION AND COMPARISON WITH THE BOUSSINESQ MODEL

In this section we discretize the evolution equation (3.32) and show that
in the limit of shallow water it reduces to the modal form of the Boussinesq
model of Freilich and Guza (1984). The model we obtain is in a form suita-
ble for numerical computations of the evolution of wave spectra in discre-
tized form. We shall express the surface velocity potential as a Fourier series:

I .

5U(x:t:tl ) =(P(va=’7’fJ1 ) = _3 Z Aj(x’tl )el(ej_‘wj’) (41 )
L j=—o0

where:

A_j=47; w_j=-w;

szjlgdx, kj=k(.x1 ,C!)j)
0

w; =k; tanh (k;h) (4.2)

and restrict the problem to unidirectional waves propagating towards the shore
by imposing:

kw;>0 (4.3)

The Fourier transform of Eq. (4.1) gives an expansion for the amplitude 4
in the form:

A(xw,t)=—in i A;j(x,t)o(w+w;) (4.4)

Jj=—o0

If this expression is substituted into Eq. (3.32), integrations over w,, w, are
performed and use is made of the symmetry properties of the kernel (Eq.
3.31), the following equation is obtained:

A Z (‘A_/'Jl +%ngijj'*'CgJij)é(w'*'U)j):
Jj=—co
—i Y aV(@,0a,ws)AgAge™ U5 (w+ w, + wp) (4.5)

o, = —oo
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Then, by 1dentifying the terms with identical § functions, one obtains the
system:

A +3C A+ Cy A, = — /jz TV (), ,p) Ao A g b= =0
A= —Co
o(w;—wy—wy) forall integer j (4.6)

which may be restricted to only positive indices, using relations (4.2) and
(4.3) and the symmetry of the kernel. The result is the dlscretlzed variant of
Eq. (3.32):

Ay +3CA+Cy 4, =

(o]

-0y TV (@, Wa,wp5) A Age™" =55 (), — w, —wy)
C‘(.ﬁ:l

<o

a/jz—l 21V (W), — Wa ) A% Ape ™ =W (0, + w, —wy)  j=1,2,...
(4.7)

The inclusion of 4o, a drift current and set down potential requires special
attention and is not presented here. Applying the model to waves on a beach,
W€ may use a zero mean mass flux argument to show that the drift current is
O(e).

Equation (4.7) enables a comparison with the model derived by Freilich
and Guza (1984) for shoaling of gravity waves in shallow water. In the shal-
low water domain:

(kh)*=0/(¢) (4.8)
so that the following expansions may be used:

kj=koj+ki;+0(e?)

koj=w;h ="/ (4.9)
ki=gwh=1/?

and

Cy=h'"2+0(e) (4.10)
(wap)*=0(€)

With these, to leading order, the kernels of (4.7) become

7zV(a)j,a)(,1,a)/,)__83

5 Pa 0y (4.11)
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Following Freilich and Guza (1984). the corrected wave number is:
Ti=ky+kK (4.12)

where «;, the first order nonlinear correction to the wave number, is defined
by:

X

A=14;| exp(zf;cﬂx): 14| exp(ij (T; ——ku)dx> (4.13)
0 0

and introduce the truncated total phase:

@:J(k0,+:r,)¢r+0(62) (4.14)
0

For a steady state (4,,=0), the following system is obtained:

<‘Ajix+%£1Aj|>+”Ajl (Tj—klj)=

co —~3/2 )
—i ¥ 3h8 WoWp| Ay | Aple™"E= =N (w; —w, —wp)
o f=1
< 3h—3/2 . .
—1i g Wals | Ay | |Ag|e= O+ O=D5(w;+w, —wg)
o, f=1
= 3p0 ©
—i Y w0l da | 145107 OO NS () — o+ ) (4.15)
a,[)’:l

Separation of the real and imaginary parts of Eq. (4.15) yields Freilich’s
consistent shoaling model.

In order to solve Eq. (3.32) or its discrete counterpart Eq. (4.7), suitable
initial and boundary conditions have to be set. They amount to specifying the
energy flux spectrum at the boundary of the shoaling region at any time, to-
gether with the initial wave field inside the domain. In the present study, the
simpler case of steady state was considered. Assuming that the amplitudes do
not depend on the slow time ¢,, system Eq. (4.7) becomes:

1C A+ Cy A =—1i ; 1 TV (W;,0n,0wg)AnAge =" == 5(w); — w, —wp)
o, p=

+i Y 2V (W), — Wy, wp)ARAge™ %05 (), 4wy —wp) (4.16)

a.f=1
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where

1‘4]' =4 (X,C()j)
~1
ok
ng/' = <8-5>(0=wj

0, = Jk(x,a)j)dx, j= 1,2,...
0

J

which is an ordinary nonlinear differential system of equations. Specification
of the modal amplitude and phases at the deep water end of the domain will
serve as a boundary condition and integration may be carried out to obtain
the shoaled spectrum at an arbitrary depth.

Equation (4.16) has no known analytical solutions. If the water is of con-
stant depth and only a single triad with suitably chosen frequencies is consid-
ered, Armstrong et al. (1962) and Bretherton (1964) have shown that ana-
lytical solutions may be found for the modal amplitude and phase variations
in terms of Jacobi elliptic functions.

In the present study, Eq. (4.16) was integrated using solvers from the
mathematical library IMSL. The numerical algorithm, known as “repeated
rational extrapolation to the limit” is due to Burlisch and Stoer (1966). The
algorithm keeps the global error proportional to the user-specified tolerance,
and was used to check the accuracy of our results. It is claimed by its authors
and by Freilich and Guza (1984) to be less time consuming than the methods
of Runge-Kutta, Adams-Moulton—Bashforth or the corresponding extrapo-
lation method that uses polynomials. We have used the Adams—Moulton—
Bashford method, which we found to be somewhat less time consuming for
the bulk of our computations.

The accuracy of the scheme was tested for the case of a single triad com-
posed of twice the same wave and its second harmonic, over even bottom, for
different depths. The results agreed with the analytical solution, available in
this case. The first order energy flux was also monitored for all numerical
integrations. It never varied by more than 3% along the whole integration
domain.

5. NUMERICAL SOLUTIONS FOR A TRIAD OF WAVES

In order to assess the performance of the present model, we consider as a
first test the nonlinear evolution of a system consisting of only three waves
with frequencies chosen to describe difference interactions:
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w; E‘(‘)‘HZ
WH =N,
ws3=(n+1)w,; ninteger (5.1)

such that w,, w,, w; satisfy the relation:
w, +w-> —w;=0 (3.2)

For the case of a single triad given by Egs. (5.1) and (5.2) the system of
Eq. (4.16) becomes:

%CgIXAl +Cg1A1x=2i7TV(CU1 ,— WhH, W5 )A§J43€—[A9
‘%ngxA‘_) + ngAzx=2l'7ZV(C03,—Cl)l ,3 )ATA3e_iA6
%Cg_';xAj, + Cg3A3X = —217CV( w; 0, )AlAge_[Ae

with

Ag_—" 03 —-91 —02

Gizjk(x,w[)d.x; i=1,2,3 (5.3)
0

The parameters expected to affect the solution are the slope of the bottom,
the initial amplitudes of the waves and the initial relative phase. In all the
integrations performed the initial value for the complex amplitude of the long
wave (wave “17) was taken as the corresponding locked wave, forced by the
shorter waves “2”” and “3”, as given by Egs. (5.3). If the water is deep enough,
the assumption that the long wave is of higher order holds; the shorter waves
evolve on slower spatial scales (the right hand sides of the corresponding
equations 1n Egs. (5.3) are of higher order). Then, the first equation in Egs.
(5.3) may be integrated, yielding:

V(iw,,—w,;,ws)
ks —k, —k,

The use of Eq. (5.4) for the initialization of the long wave may be shown
to make the initial relative phase of the system irrelevant and thus, the rele-
vant parameters remain the slope and the initial amplitudes. It should also be
noted here that Eqs. (5.3) for a single triad should keep the first order energy
flux constant within an error of O(¢). In deep water, the primary waves evo-
lution is governed by the linear energy conservation law while the secondary
wave 1s locked and its contribution is to the next order. In shallow water on
the other hand, using the Boussinesg-type asymptotic form of Egs. (5.3) it

C{24, = —2n A%dse~'AD (5.4)
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may be shown that the energy is exactly conserved. From the same analysis
one obtains that the wave action is not conserved, in agreement with results
cited by Phillips (1977).

The integrations performed comprise two groups: one dealing with the
comparison of the present model with other models; the other with the influ-
ence of the mentioned parameters on the numerical results.

For comparison with other models. the bottom slope was fixed at 0.01. In
all cases, the initial amplitudes of waves 2 and 3 were the same:

g="A=1m; j=23 (5.5)
S

For the linear model, the evolution of the waves “2” and *“3” is computed
using the linear energy conservation law:

and the long wave *“1” is computed locally by means of relation (5.4). Com-
parison with the linear model was made over a depth span from 50 m to 3 m.

Figure 2 compares the results of the present model (solid lines) with the
linear one (dashed lines). The shorter waves have an amplitude of | m in
deep water (2 and 3). In deep water, the present model keeps the long wave
constant to order O(¢) and almost no energy is exchanged with the primary
waves: the long wave is in effect a forced locked wave. As the water becomes
shallow, the linear model exhibits a very fast growth of the long wave. An
asymptotic expansion based on the assumption that it remain of order O (¢)
breaks down here. In the present model, this is the region where the secondary
wave begins to affect the primary waves, and energy exchange among the triad
becomes important. The long wave remains finite.

o
o~

0.5

0.0

Fig. 2. Shoaling of a triad of waves. Comparison of the present model (full line) with the linear
model (dashed line), for medium waves.
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The result of Freilich and Guza’s (1984 ) Boussinesq-type consistent shoal-
ing model is given in Eq. (4.15), and is expected to perform well in shallow
water. For comparison purposes, the present model was started at 20 m depth,
and its results at water depth of 15 m were taken as initial conditions for the
Boussinesq-type shoaling model. Values characteristic for short, medium and
long waves were taken as follows:

Short waves: n=20; w.=:Hz; A,255m
Medium waves: n=12; w,=1;Hz; 1,2130m (5.7)
Long waves: n=7, w,=77Hz; 1,2250m |

where the wavelength of wave 2 is given at the depth /=20 m as calculated
by the linear dispersion relation.

Figure 3 shows the performance of the present model (solid lines) against
the Boussinesq model given in Eq. (4.15) (dashed lines). As it should be
expected, the agreement is best for the long wave case and worst for the short
wave one.

The influence of the bottom slope and the initial amplitudes on the solu-
tions of Egs. (5.3) is shown in Fig. 4. The integrations were performed for
medium length waves, as defined in Eq. (5.7).

For the study of the influence of the bottom slope, the initial amplitudes of
the primary waves were 1 m. For these integrations, the domain was reduced
to water of depth less than 20 m as up to that depth it has been seen previously
that the linear model gives relatively accurate results (the secondary long-
wave has a forced wave status).

Most common values for beach slopes lie between 0.005 and 0.05. The so-
lution for these two values are shown in Fig. 4a. The evolution on a slope of
0.05 (dashed line) is compared with the evolution on a very mild slope of
0.005 (solid curve) on a milder slope the horizontal distance (and time) for
interaction is longer. This results in more intensive interaction over the spec-
ified depth range. Hence the oscillations in the waves’ amplitudes. For the
study of the influence of the initial amplitude, the slope was fixed at a value
of 0.01. In Fig. 4b we compare the interaction of medium waves with 1 m
deep-water amplitude (dashed lines) to waves with 2 m amplitude (solid
curves). The higher waves interact more strongly, giving rise to more rapid
oscillations in their amplitudes. Note that the accompanying long wave be-
comes relatively higher in shallow water. It becomes proportional to € rather
than €* as it changes from a forced wave to a free wave. The secondary long
wave 1s initially 4 times greater in the second case than in the first case. At the
end of the shoaling region, at depth of 3 m, their ratio is about 2. Thus, we see
that the importance of nonlinear interaction increases on milder slopes and
with steeper waves.
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Fig. 3. Shoaling of a triad of waves. Comparison of the present model (full line) with the Bous-

sinesg-type model of Freilich and Guza (1984) (dashed line). (a) short waves: (b) medium
waves; (¢) long waves.
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Fig. 4. Shoaling of a triad of waves (medium wavelength). (a) The influence of the slope. Full
line: Slope 0.005, dashed line: Slope 0.05. (b) the influence of initial amplitudes (slope 0.01).
Full line: Initial amplitudes 2 m. Dashed line: Initial amplitudes 1 m.

6. EXPERIMENTAL VERIFICATION

6.1. Laboratory experiments

The laboratory data used to test the present model consisted of measure-
ments from the calibration tests for the Herzlia Marina model, conducted by
Agnon and Keren (1990). The physical model replicates the bathymetry at
the site, without the marina’s structures. Simulations of shoaling of a modi-
fied JONSWAP spectrum (similar to the well known JONSWAP spectrum



50 Y. AGNON ET AL.

but adjusted to regional conditions ) were performed for various directions of
propagation covering a wide range of characteristic spectral parameters (sig-
nificant wave height, peak frequency). The wavemaker is a hydraulically con-
trolled swaying vertical plate, programmable to a desired spectrum. Guiding
walls were placed along wave characteristics on both sides in order to elimi-
nate wall effects. Reflection from the beach was negligible.

The laboratory simulations were not designed specifically for the testing of
the present model. For comparison purposes, we tried to choose the set of
data which could be considered closest to the assumptions used in our deri-
vation. The set chosen was that of waves approaching from the WNW direc-
tion (see Fig. 5), with significant wave height of 2 m and peak period of 14 s.
It was closest to the direction of perpendicular incidence (about 5° off ), and

i Wave Maker

|

\
Foa—

\:.

O I 2 3 4 5m.Model /
g ' Sism.Prororype ==

Fig. 5. Layout and bathymetry of laboratory simulations (Agnon and Keren, 1990). Depth
contours in meters.
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seemed to exhibit less wave breaking. Still some incompatibilities remain.
which together with the inherent drawbacks of the present model, may ac-
count for some of the disagreement between the measured data and our nu-
merical solution.

Among the important reasons for the discrepancies is the fact that the en-
ergy flux decreases in the experimental data (loss of energy through break-
ing), whereas the present model keeps the energy flux constant to 0.03 rela-
tive error. Also, the model does not account for possible excitation of the
natural modes of oscillations of the basin, that should affect the domain of
frequencies smaller than 0.03 Hz. Finally, and most important, no informa-
tion on the modal initial phases was available, since it was suppressed in the
spectral analysis process, in which a stochastic approach was employed.

The present model is a deterministic one, and the initial modal phases are
of crucial importance for its description of the evolution of the shoaling spec-
trum. This crucial indeterminacy was tackled here by taking an ensemble of
such initial random phases sets, with amplitudes that correspond to the mea-
sured spectrum, and averaging over the ensemble of results.

In the integrations, the slope of the bottom was taken 0.0118 which gives a
total length of the shoaling domain of 845 m, for a difference of depth from
14 m to 4 m. In order to avoid the distortions introduced by the wavemaker,
the model was initialized at 12 m depth. Discretization of the spectrum was
made by defining (see Eq. 4.1):

W, =n-Aw n integer, 1 <n<60

1

This set of frequencies was chosen in order to cover the frequency domain
of the measured spectrum, and gives a reasonable balance of numerical effort
and accuracy of description. The results presented in the figures are averages
of over 50 sets of random initial phases. This number was also fixed by rea-
sons of numerical effort.

In Fig. 6a, the measured spectrum at 12 m and 4 m depth is presented,
together with the computed spectrum at 4 m. depth. The vertical span of the
shaded area around the computed spectrum equals the modal standard devia-
tion. Figure 6b shows, at the same depths as before the leading order energy
flux spectra. As the linear theory keeps the modal energy flux exactly con-
stant, the modifications of this spectrum are due only to nonlinear interac-
tions. The area under the heavy and dashed curves is roughly the same. The
effect.of energy transfer to lower and higher frequencies is evident.

In order to obtain a global description of the accuracy of the numerical
solutions, the frequency domain was divided into three regions approxi-
mately describing long, medium and short waves; significant wave heights
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spectrum at 45 m depth). Vertical span of shaded area equals the modal standard deviation.
(a) Energy spectrum; (b) leading order energy flux spectrum.

were calculated for each region, for the measured and computed shoaling
spectra. Figure 7 shows the evolution of the computed spectrum in terms of
these significant wave heights together with the ratios of the measured to
computed heights. The main disagreements are for the total energy 1n the
spectra at 6 and 4 m depth. Breaking of waves must have cccurred there.
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Although the model does not give an adequate description, in detail, of the
processes in the very long wave domain, globally, in terms of significant wave
heights, its prediction is rather close to the measurements, the error is less
than 5% for depths greater than 6 m.

6.2. Field measurements

The present model was tested against field data provided by measurements
conducted by CSIR (Division of Earth, Marine and Atmospheric Science and
Technology) at Walker Bay, South Africa in February 1990. Again, the basic
input to the numerical integrations were the spectral shapes, available at the
depths of 19.3, 8.0, 6.3 m. The bottom slopes at the site are 0.019 and 0.011
for the first and second segments, respectively, corresponding to a total length
of the considered shoaling domain of about 1000 meters. The bathymetry was
closer to being two dimensional than the bathymetry in the laboratory exper-
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measurements (dashed line: the initial spectrum at 19.3 m depth, thin line: the measured spec-
trum at 6.3 m depth). Vertical span of shaded area equals the modal standard deviation. (a)
Energy spectrum; (b) leading order energy flux spectrum.

iment above. The initial deviation from normal incidence was about 20° and
decreased with the decreasing depth.

The initial spectrum (at 19.3 m depth) exhibits an energetic peak at a pe-
riod of 10.8 s, and has a significant wave height of 2.14 m. Its evolution shows
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the development of a secondary peak at the second harmonic of the peak fre-
quency, and a weaker excitation of the long wave band. The first order energy
flux, as calculated from the measurements, showed relative variations within
the limit given by the errors of the numerical integrations (3%). This is in
accordance also with the records of wave steepness, which indicate negligible
wave breaking in the domain under consideration.

The numerical integrations were performed as for the case of laboratory
measurements, but with a frequency resolution of Aw=1/300 Hz (see Eq.
6.1), giving 60 modes for a high frequency cutoff at 0.2 Hz. Figs. 8 and 9
present the results averaged over 50 initial random phases sets.

The analysis in Figs. 8 and 9 follows that of Figs. 6 and 7, respectively. The
spectrum measured at 19.3 m depth was used as input to the evolution equa-
tion of the present model and the results are compared with the measured
spectrum at a depth of 6.3 m. The second harmonic at about 0.17 Hz 1s evi-
dent in the measurements more than in the computation. The diminishing of
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the secondary peak at 0.11 Hz is also more pronounced in the measured data
than in the mode] results.

As before, Fig. 8a presents the measured spectra at both ends of the shoal-
ing domain, at 19.3 and 6.3 m depth, together with the computed spectrum
at 6.3 m depth. Figure 8b presents at the same depths, the leading order en-
ergy flux spectra.

Figure 9 presents the evolution of the spectrum in terms of significant wave
heights at the three locations. We see that the total significant wave height is
within a 5% error bound.

6.3. Discussion

The performance of the model as compared with measurements is of great
interest. For such a comparison, two sets of measured data were available to
us — one coming from laboratory simulations, the other from field measure-
ments, neither of them specifically designed for the testing of a deterministic
unidirectional shoaling model. For the case of laboratory measurements, the
bathymetry (Fig. 5) is nearly one dimensional, the waves do not propagate
exactly normally to the shore, the data exhibit features that may be related to
the excitation of the natural frequency of the basin, and the measured leading
order energy flux shows a decrease of 20% at4 m depth. Both sets of measure-
ments provide input data for the model in the form of spectral shapes, with
no information on the initial modal phases; information that is crucial for a
deterministic model. This last difficulty was circumvented here by averaging
over a large number of realizations (50 for each data set) performed with
random initial phases. For a 60 modes spectrum, the total amount of C.P.U.
time requested for the work on the IBM 3081D computer was about 12 hours.
For each set of measurements, we calculated averages for separate sets of 15
runs each, in order to verify the consistency of the final results. Each such
“partial” average yielded a fairly similar picture of the process (in terms of
significant wave heights, the deviations with respect to the final “total” av-
erage over 50 integrations were not greater than 5%).

Bearing in mind the present simplifying assumptions which are not strictly
valid for the data sets presented, the performance of the model is quite good.
Further work should include comparison with data collected in unidirectional
settings and mainly the extension of the model to more general situations,
along the lines of the work of Suh et al. ( 1990) for Stokes waves.
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APPENDIX: SOLUTION OF THE LAPLACE EQUATION FOR THE VELOCITY
POTENTIAL AND THE BOTTOM BOUNDARY CONDITION

Here we look for a solution of the system (3.8) in the form of an asymptotic
expansion
F=F, +ieF,+0(€?) (A.1)

Substitution in Eq. (3.8) and separation of the powers of € yields the follow-
ing hierarchy:

0 Fl::'“kzFl:O —-h=<z ;
(6 ) {Flz_o z=—h (A-)
1 FZZ:_kZF-?:(kFl).\'x+kF1‘x1 - SZSEH
() {F2:=khx|F1 c=—h (A.3)

The solution of Eq. (A.2) is simply:
Fy=f(x,,w,t;)coshk(z+h) (A.4)
where fis an unknown function. Substitution of F, into Eq. (A.3) gives:
Fs.. —k?F, =2kf, cosh k(z+h) +2k*fh, sinh k(z+h)

+ k. [2k(z+h)sinh k(z+h) +cosh k(z+h) ] —h<z<en
Fr.=k. fcosh k(z+h) z=—h (A.S)

The solution of this system may be sought by means of variation of param-
eters. The following result is obtained:

Fy=[fo(z+h)sinh k(z+h) + fkh,, (z+h)cosh k(z+h)

+ifk (z+h)*cosh k(z+h)] (A.6)
which may be rewritten as:
Fy=[f(z+h)sinh k(z+h)+1fk(z+h)2 cosh k(z+h) ] (A.7)
Defining the differential operator:
D(k,z) =l'[:(z+h)sinh k(z+h)ai +4k(z+h)Z cosh k(z+h)} (A.8)
X

we may finally write the solution for F as:
F=fcoshk(z+h)+eD(kz)f (A.9)
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where fremains an unknown function:

f=fx0,1) (A.10)
and may be written formally as:

i
f=m¢(x1_,w,h) (A.11)

This solution is used in Egs. (3.9) and (3.10).
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