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Shoaling of nonlinear wave-groups on water of slowly
varying depth

By Ruth Iusim and Michael Stiassnie, Dept. of Civil Engineering,
Technion I.1.T., Haifa 32000, Israel

1. Introduction

J

The shoaling of weakly nonlinear surface wave groups is important to the
understanding of coastal wave climate and coastal flow regime. ,

In the past, most efforts concentrated on the equally important though
simpler problem of shoaling of wave-trains (i. . monochromatic wave groups), for
details see Stiassnie Peregrine (1980).

The first mathematical formulation for shoaling of wave-groups was given
by Djordjevic’ and Redekopp (1978), and in a somewhat improved version by
Stiassnie (1983). This formulation is limited to cases where the water depth is
small compared to the group-length. Equations suitable for water depths of the
order of the group-length are deduced in Peregrine (1983); combining the con-
stant depth model by Davey and Stewartson (1974) and the higher-order model
for infinitely deep water by Dysthe (1979).

The only available solutions are those for the shoaling of isolated wave-
packets (solitons), which were originally given by Djordjevic’ and Redekopp in
their 1978 paper. They predict that a soliton envelope can undergo fission only
if it propagates into deeper water. By heuristic assumptions for the evolution
along the slope, they also estimate the number of solitons emitted after a single
soliton descends from a shallower shelf. A more recent study, Turpin, Ben-
moussa and Mei (1983) confirms these results qualitatively, but not quantitative-
ly.

To the best of our knowledge, no results for shoaling of wavegroups (i.e.
modulated wave-trains) have been presented so far. These modulated wave-trains
are of particular importance since almost every wave-train will eventually be-
come modulated due to its intrinsic Benjamin-Feir instability. The aim of the

" present paper is to throw some light on the evolution during the shoaling of a
modulated wave-train and its influence on the mean free surface and the wave-
induced mean flow.

Section 2, 3 and 4 outline the derivation of the mathematical model and
its simplifications to a level which enables an analytical solution. The model
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presented at the end of Sect. 2 is rather general; it consists of a coupled system
of equations for the complex wave envelope and the induced mean flow poten-
tial. In Sect. 3 we add the assumption of periodicity of the modulation, which
leads to decoupling of the system of equations. The result is a nonlinear
Schrodinger equation with a variable (depth dependent) coefficient, which can
be solved by reasonable numerical efforts. In Sect. 4 we adopt the assumption
of three-waves sytems, which has been used for constant depth in Stiassnie and
Kroszynski (1982), and which together with a W.K. B. type approach enable an
analytic, though asymptotic solution. This asymptotic solution is compared with
numerical results in Sect. 5. Sections 6, 7 and 8 include a detailed presentation
and discussion of the physical results obtained from our calculations.

2. Evolution equations
/

Assuming irrotational motion, there exists a velocity potential ¢ (x, z, )
which satisfies Laplace’s equation:

Orx + 0. =0, (2.1)

¢ is time, x is the horizontal coordinate in the direction of wave propatation, and
z is the vertical coordinate pointing upward from the undisturbed free surface.
The boundary condition on the bottom, z = — h(x), is

@, =—h(x) ¢, (2.2)

The boundary conditions on the free surface, z = {(x, t), are the kinematic
condition:

¢, =+ 0. Ly (2.3)
and the dynamic condition:
290+ 20, + ¢+ @2 =0. (2.4)

Considering situations for which the depth  (x) as well as the wave input vary
slowly, we assume all wave-field properties to be slowly changing. To render the
term “slowly” explicit we introduce a small nondimensional parameter ¢ which
is a measure of the wavy surface slope, and define the following new variables:

r:eﬁi; —t>, (2.52)

& =e?x; (2.5b)

where Q' = 0Q/0K is the group velocity. Q% = g Kth(K h) is the linear disper-
sion relation, relating the leading order constant frequency Q to the leading
order wave-number K (£) and the water depth h(&).
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Having the wave-groups (i. . wave fields with narrow spectra) in mind the
velocity potential ¢ and the free surface displacement { are expanded in Fourier
series: '

Q= Qg (X, z, t) + {QDl (Ta é: Z) eiG + ¢, (Ta 6’ Z) e2i9 + - C C'} (26 3.)
(=000 + {0+ L@ He + - +cc) (2.6b)
where 6 = (| K (&) dx — Q1¢), and c. c. stands for the complex conjugate. With ¢

chosen to be small, the functions ¢;(z, {, z) and {;(z, {) for j = 1 are expanded
formally in power series of ¢:

0,682 = T &0y 82) | 272
L LED= T 0. 2:7)

The mean water level {, and the induced mean flow potential ¢, require a
special treatment and are best written as:

{o(t, &) = & {50- (2.7¢)
Po(x,2, 1) = £010(1, & 2) + &2 @a0(E) - . (2.74)

Note that it turns out that while ¢,,; and {,,; for j = 1 are all of order one; the
order of @44, {5 and @, is between one for Kh = 0(1) and & for Kh — 0. The
term &% @,, (&) - t, in Eq. (2.7d), is needed to suppress terms that grow bound-
lessly with time at higher order, as was shown in Stiassnie (1983). Following the
method of derivation used by Djordjevic’ and Redekopp (1978) but using Egs.
(2.7¢, d), instead of expanding ¢, and {, in power series of ¢ (which is justified
only for K h = 0(1)), we obtain a system of evolution Eqs (29a, b, c, d) for ¢,
and the complex wave envelope,

AT, &) =—2iely, (2.8)
as follows:
i oY Q" —251 2 4

29/ aé A+1A +2(Q/)3A‘cr_ |A| (ﬁ2¢10t+ﬂ3¢20)g,9

2=0, (29a)
82
(pl()zz + (Q/)Z qolon = 0> —h é Z é 0: (2.9b)
& gﬁ
Pro. + E P10.. = = (|A|2) z=0 (2.9¢)

®10,=0; z=—h. (294d)
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The depth dependent coefficients are:
_ gK?* 9—12th*(Kh) + 13th*(Kh) — 2t h® (K h)

bi=%a 8h (K ) (2.10a)
K2 [2Q ,
B, = 50 ‘ <—K_§ +sech (Kh)), (2.10b)
K? ,
= h). .
B3 2QSech(K?) (2.10¢)

A set of modulation equations equivalent to (2.9), but for constant depth, has
been recently derived from the finite depth Zakharov equation, see Stiassnie and
Shemer (1984). The mean water level {, is given by:

; 82 gKZ
Co=—(€D10t_(on)“_—zSEChz(Kh)‘{Alz (2.11)
g 40

and is of order between &* to ¢3, depending on the water depth.

3. Periodic cases

Restricting the discussion to cases for which the complex wave envelope
A (z, &) is periodic in 7, and assuming zero averaged (over t) mass flow in the
x-direction (as in the case of an impermeable beach) enables the decoupling of
the system (2.9). For these cases A is governed by the nonlinear Schrodinger
equation:
i o Q" e ? 2o, ——

) %10 402 € 2
— A — A == .
10 B +id: + 2@ A, o |A|” A o |A)* 4, (3.1)

where the bar denoted averaging over 7, and
9° B3
2Q(1 — gh/(Q)%)

 gk@ g’ b3
= — (B, + B3) — 2Q(1 — gh/(2)Y)

% = By + (3.22)

, o (3.2b)

The induced mean flow potential is given by:
—¢ P|APgKQ @

20n F T @@ B0+ b, () e
(3.3)

P10 =
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where vy is the period of A (z, &);
a,=cosh(2nen(z+ h)/Qv), n=1,2,..., (3.3a)

-2 .2
b = e 9 .C,, (33b)

" 2 2 h 27\ 2 "
20 nngsinh nnehy (2mn cosh nneh
ey Qy Yy Q'y

and C, are the Fourier coefficients of (|4[%),:

(AP) = 3 {C,() e + C_, () e ). (3.4)

The convergence of the Fourier series (3.4) was assumed to be independent of .
The potential ¢,, which is needed to calculate the mean water level {,, see
Eq. (2.11), is given by:
/

@ro=—¢2|APgKQ2Qh. (3.5)

The details of the derivation of (3.1) to (3.5) are given in Appendix 4. Eq. (3.1)
is identical to Eq. (4.9) in Stiassnie (1983), which has been derived assuming no
vertical dependence of the induced mean flow. The latter assumption is strictly
valid only when K & = 0 (1), namely, for cases where the water depth A 1s small
compared to the group length (¢ K)~'. For these cases the present ¢, , and {,
yield Eq. (3.7) and Eq. (3.8) of Stiassnie (1983).

A simpler dimensionless form of Eq. (3.1) is obtained by means of the
transformations

L (2Q3 QN2 f—= % a,dx

Y =c¢ 1( 7 > Aexpl<[A|2x{° ZQ, ), (3.6a)

1 é Q//

T = X =— dé. 3.6b

T/’yﬁ ’))2 é_Lz(Q/):’, é ( )
which give
ile+l//T7‘+ull//|2w:O: (3.7)
302

=g QT

Q=2 (33)

The dimensionless parameter p is 2 monotonic increasing function of K h,
having the values zero and (Qy)? for K h = 1.363 and K h — oo respectively. The
statement of the mathematical problem, given by Eq. (3.7), is completed by the
following input condition at X =0 (i.e. x = x_,: a reference point in infinitely
deep water).

W(T,0)=1+2Be%cos2nT) (3.9)
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which corresponds to a system composed of a carrier-wave and a symmetric
“side-band” disturbance
e

{(t,xye) = 522 Re {e—iQt + Be—i[(1+21r£/.Qy).Qt-a]
e G (3.10)

For constant depth, pu = const, it is well-known that Eq. (3.7) with T in (0, 1),
subject to periodic boundary conditions has the following X invariants

Jy = } [y 1% dT, (3.11a)
J, = i W*yr — Y yYP) dT, | (3.11b)
7= i(lt//l“-%l%lz) dar. (3410

These invariants are determined by the input condition, Eq. (3.9), so that

Jo=1+28, J,=0, (3122, b)

Jy;=1+(@4—P+2cos2a)-2B*+6p* (3.12¢)
where

P =872y (3.13)

For varying depth, = pu(X), J; and J, remain invariant and are given by
(3.11a,b) and (3.12a, b), but J; is a function of X governed by the equation,

dJ 2y L
213? - #_ZX£|¢T|2 dT. (3.14)

4. Three-waves systems
The solution of Eq. (3.7) can be expanded in a Fourier series

Y(LX)= X D,(X)e*™T. (4.1)

The boundary condition at X =0, Eq. (3.9), gives D,(0)=1; D;(0)
=D_,(0)=p¢%D,0)=D_,(0)=0forn = 2.

Stiassnie and Kroszynski (1982) truncated the above given series and con-
sidered only three waves systems:

V(LX) = 3 D,(X)e™T, (42)

n=-—1
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Substituting Eq. (4.2) into Eq. (3.7) yields the following system of ordinary
differential equations:

dD

ia;g + 1 [(1Dol? + 4|D,[?) Dy + 2D3 D¥] = 0, (4.32)
dD P

i +u[<211>012+3113112——2-)01 +D3D1"]=0‘ (4.3b)

Note that Eq. (3.11b) yields D_, = D,.

For constant depth the system of Egs. (4.3 a, b) has exact solutions in terms
of Jacobian elliptic functions with periods of order 1 in X which are summarized
in Appendix B; for details see Stiassnie and Kroszynski (1982). These solutions
depend on the invariants J,, J5, and on the parameter y, which in turn depends
on the water depth h and on the modulation period y. For very mild depth
variations, where hy = o(1), we apply an asymptotic, W KB related approach,
assuming the local solution to be that of the constant depth type and using
Eq. (3.14) to determine J;. J; and y are fixed by the input conditions and J,, is
given through I (P) by:

4_p

! 7P

21n

(_ AP

i [P@4—P) 7P
Py 7 (2P24— PP .

n<l(2P~1)II>

where

1(P)=J,(P) — J2. (4.5)

The initial value of I, at X = 0, where P = P, is denoted by I, and is given by:
Io=Pp>[2p*+4(1 +cos2a) —2P,]. (4.6)

Iy, as well as I(P) were assumed to be o(1) throughout the rather lengthy
derivation of Eq. (4.4). In all our examples we choose (y =27Q"!) P, = 2,
corresponding to the fastest growth-rate of the Benjamin-Feir instability.

5. Numerical verification of the asymptotic solution

In order to appraise the relevance of the asymptotic solution given in the
previous section, we compare its results with those of a numerical solution of the
system of ordinary differential Eq. (4.3a, b).
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Figure 5.1 shows I = I(P) for four initial values of I, = I(2) (I, = — 0.04,
—0.01, 0.04, and 0.1). The broken line represents the asymptotic solution and
was obtained by numerical integration of Eq. (4.4). The solid line was obtained,
by substitution of the results obtained from a numerical solution of the system
of O.D.E (4.3a.b) into the expression

I(P)=2|D;[*{|Dy > + 2|Do|* — P + 2|Dy|? cos [2 (arg D, — arg Dy)]} .
(5.1)
The numerical solution of the system of O.D.E was obtained using a
trapezoidal method and assuming the P (h(X)) = 2 + 0.2 X. Note that the as-
sumption |I| < 1, which is necessary for the asymptotic solution to be valid,
imposes a restriction on the range of variation of P(P = 2.8 corresponds to
Q*hfg = 4). In Fig. 5.2 we show three parts of the exterior group envelope
|¥ (0, X)| as well as the interior group envelope | (3, X)| for the input conditions
a=20,=0158 (I, = 0.1).

0.i0 T T T T I T T

Figure 5.1
I'=1(P), — — — Asymptotic
solution, Numerical

solution of Egs. (4.3a, b).

Figure 5.2 x
Exterior-group-envelope |y (0, X)| and Interior-group-envelope I!//(%, X)) for the input conditions
a=0, $=0158, (I, =01) — — — — Asymptotic solution, Numerical solution of Egs.

(43a,b).
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Here again, solid lines represent the numerical solution of Eqs. (4.3a, b) with
P =2 + 02X while the broken lines correspond to results obtained by the
asymptotic method, utilizing the relation:

W(LX)*={-21+24J, —P)z— 75>
+[SQI+2P7— 2912  45cos2n T]?}/8 % (5.2)

where 7 1s given in Appendix B, and S is the sign of cos a.

The three parts shown in Fig. 5.2 are for P = 2, 2.44, 2.75 for the asymptotic
solution compared to P in (2, 2.03), (2.44, 2.49), (2.75, 2.81) for the numerical
solution of the O.D.E., respectively. The agreement between the two methods
of solution, as seen in both the above figures is rather encouraging and seems to
indicate the validity of our new asymptotic solution of the system (4.3a, b).
Nevertheless, one still has to answer the question if, and to what extent, the
system (4.3a, b) itself is a reasonable substitute for the N.L.S, Eq. (3.7). For
constant depth Stiassnie and Kroszynski (1982) show a good quantitative agree-
ment in the length of the modulation-demodulation cycle and only a qualitative
agreement for the amplitudes. A similar trend can be seen in Fig. 5.3, for X < 0.6,
which compares two numerical solutions, one for the N.L.S. (3.7) — dotted line,
and the other for the system of O.D.E. (4.3a, b) — solid line.

For X > 0.66 the exterior and interior group envelopes, given by the N.L. S.
(3.7), start crossing each other and interchanging their roles. This trend is repro-
duced by the solution of the system of O.D.E. (4.3a, b) three modulation-
demodulation cycles downstream, starting at X > 1.23.

The input data in Fig. 5.3 is « =0, § = 0.1 (I, = 0.04) and the variation

P =2+ 02X is assumed. Both the exterior and interior group envelopes are
drawn.
" We believe that our much-simplified asymptotic solution is not over-
simplified, and is able to produce quite a few results of qualitative, and maybe
even semi-quantitative relevance, which enable us some new physical in-
sight.

2.4
2.2
5 2.0
o .8
N
= L4}y
%]
1.0
—o0.8

%06
fo.4
S0z 4
- 1 | 1 I L | ! { | ] t ! i
o 0.1 0.2 c.3 0.4 0.5 c.6 0.7 0.8 0.9 LQ It 1.2 1.3 1.4
Figure 5.3 *
Exterior-group-envelope |y (0, X)| and Interior-group-envelope lxp@, X)| for the input conditions

a=0,4=01, (I, =0.04),
tion of N.L.S. (3.7).

Numerical solution of O.D.E (4.3a,b) — - — - Numerical solu-
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6.On P and I,

One fundamental property of the asymptotic solution is that it depends
on P and I, solely. Given the input data «, § (and P, = 2), I, is determined
by Eq. (4.6). Then, integrating Eq. (4.4) from P, to P the parameter I (P) is
found, and the solution given by Stiassnie and Kroszynski (1982), is locally
applied.

Figure 6.1 gives the relation between P and nondimensional local water
depth K h, (where K, = Q?/g is the wave-number in infinitely deep water),
for y=2nQ71. P is a monotonic decreasing function having the values
infinity at K h = 1.195 (K h = 1.363) and 2 for K h — oo. The input value I,
(for P, = 2) dependence on o and f is shown in Fig. 6.2. Note that different
combinations of « and 8 give the same I, and thus basicly the same solution for
any P.

/

2.9
2.8 — —
2.7 - -1
2.6 — —
2.5 —
P
2.4 - =
2.3 — -
2.2 — ]
. 2.0 —_— —
Figure 6.1 ~
P =P(K_h)for P, =2. 2.0 AN RO SN WY SN NN RS B
2 4 6 8 10 12 14 16 18
Kgh
0.10
0.08
0.06
2
B
0.c4
0.02
Figure 6.2
Q.00
Iy =1y(a, B) for Py =2 -1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 (.0

(on B2 =0:1, = 0). cos 2@
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7. Group envelopes

The free-surface of an (unstable) shoaling wave-train, displays three distinct
length scales: 4; — the wave length; A, — the modulation or group length; and 1,
— the modulation-demodulation, group-envelope, or maybe. best “supergroup”
length. These three lengths are given by

A, =27/K, (7.1a)
d,=2me 1 QQ, (7.1b)
42 P(Q)° |2P2 (4 — P)?
Ay = In , (71¢)
T2 /P4—P) | QP=1)I

see Fig. (7.2a).

It can easily be seen that in the range of depths where the asymptotic
solution applies, K h = 4, 4, and 4, remain almost constant. On the other
hand, 45, which depends on P, exhibits quite a remarkable variation, as shown
in Fig. 7.1.

In Fig. 7.1 we show the variation of 1, as a function of the depth K h
for four different input data I, = —0.04, —0.01, 0.04, 0.1. For I, <0, A; de-
creases with decreasing depth, but for I, > 0 15 increases with decreasing depth
up to a “critical depth” (corresponding to I = 0) and from there on starts to
decrease.

Figure 7.2 shows the group envelopes (dashed line) and wave envelope (solid
lines) at a fixed instant for ¢ = 0.2, at the following four locations: (a) — infinitely
deep water, P, = 2,1, =0.1;(b) K h =112, P =22,1 = 0.052;(c) K h = 5.7,
P=2451=001;(d) K ,h=42,P=2751=-—0.028.

In Fig. 7.2a we have added a portion of the wavy-surface (thin solid line) as
well as the lengths 1,, 4,, and ;. Note that the supergroups (namely: the
exterior and interior group envelopes) are fixed in space, while the wave envelope
moves with group-velocity and the waves themselves with the phase velocity.
Similar sketches to Fig. 7.2 were obtained for the three other cases given in
Fig. 7.1.

’<9 i6 —
x
‘-
. 8
Figure 7.1
The “supergroup” length 4, as a 4 i e (LN LN [N S

function of depth A.
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2 Xy free

Figure 7.2

The group envelope (----- ) and
wave envelope ( ) at t = con-
stantfor Py = 2,1, =0.1,¢e = 0.2 at
K_h=(a)oo, (b)11.2, (¢) 5.7 and ) T S

(d)4.2. . ‘ R

1 2 3 4 5 & 7 8 9 10 W 12 13
«Kg
e (x-xg)

1.8 T
— 1.6 —
o (a) (b) (el (d) (e)
S e -
>

1.2 - —

P2 p=2.32 P=I7.7 P=22.4\/ Px4.|

1.0 A < 4 4 4

C.8 - -
X v
- 0.6 — —
o
Soal .

0.2 |- -

l
o.l b

Figure 7.3
The group-envelopes, for P, = 2,1, =0.1,at K h = (a) c0, (b) 7.11-4.8,(c) 1.32-1.29,(d) 1.12-1.11,
(e) 0.96-0.95.

In order to complete the picture for shallower water depth we present in
Fig. 7.3 the group envelopes at five locations: P = a: (2, 2.05), b:(2.32, 2.63),
c:(17.7,22.8),d: (— 224, — 17.5), e: (— 4.1, — 3.9), as obtained from a numerical
solution of the system (4.3a, b) for the same input data as in Fig. 7.2 assuming
p=2n?—-10X.
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The results in Fig. 7.3 indicate that A, continues to shorten and that the
intensity of modulation decreases.

8. The mean flow field

We express the mean flow u = 0g,/0x = —OY/dz, v = 0¢,/dz = OJ/Ox
through the stream function ¥/

2 -1
~ g-Kye
Y’zm(]Doiz'l'lellz)Z
N gyet B (D§D + Dy DY) sh(2(Z + H))cos(2n T)
4n Q3 QY gy
2HY—ch(2H
2n8Q’Sh( )—ch(2H)
, Zyet D, *’sh(4(Z+ H 47T
fngg39,~ﬁ2| g17[) Sh( ) cos@m )+con'stant
h4H)—2ch(4H
meqy S AH) —2ch (G H) (8.1)

where Z =nez/Qy, H=neh/Qy and ¥ =¢"2Q3J/g* are dimensionless
quantities. The constant in Eq. (8.1) is chosen so that ¥ = 0 at the bottom. The
mean free surface {, is given by Eq. (2.11)

T T T T T T T I T T

Exterior group envelope

envelopes and wave envelope (b)

Figure 8.1 Sxot oA M M /\/\ M (c)
The flow field for P, = 2, I, = 0.1, ©7e v, \/
e=02 at K _h=c0. (a) group- -0.2

il

4

; S
mean flow stream-lines, (¢) mean 2 3
free-surface. ) T4 7e'x
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T T I T T T T T T

N \!:ljl(‘ll VX3

Figure 8.2 . \j \/

Asin 8.1 for K _h =112 L

Figure 8.3
Asin 8.1 for K h
=42

The stream-function ¥ (7, Z) as well as the mean free-surface for cases a, b
and d of Fig. 7.2 are presented in Figs. 8.1, 8.2 and 8.3 respectively. These figures
demonstrate the rather complicated structure of the wave induced mean flow
field.

Some of the main features are: (i) the mean current, which is shown in
part (b) of the figures, as well as the mean free surface, in part (c) exhibit a
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somewhat cellular structure influenced by the wave envelope variations; (i) a
dominant adverse current appears underneath the high waves and a much
weaker, positive current (in the wave propagation direction) under the low
waves, for the shallower cases the positive currents almost disappears; (iii) the
magnitude of the maximum adverse currents at the free surface is almost
the same for all three depths (K h = oo, 11.2 and 4.2); (iv) one can notice
the tendency of the flow fields to become more uniform in the lower parts
and on the sides of the supergroups (where the modulation amplitudes get
much smaller); (v) there is a set-down in the mean free surface accompanying
the peaks of the wave envelope and a smaller set-up accompanying their
troughs.

This work was supported by the European Research Ofﬁce U.S. Army,
under contract no. DAJA37-B2-C-0300.

/

Appendix A: Decoupling of the system (2.9) for periodic cases

Assuming A and ¢,, periodic in t with period y, the solution of (2.9) is
expanded in a Fourier series:

g3 1/2 L f ozzdv o]
,T) = ¢ e M @D, (&) +
A7) <2Q5Q> ; {o(f) ngl

D, + DO }}
where «, is given by (3.2b) (A.1)

010679 =007+ %O+ X a,()

— 2zint

2zint
Ab (e T +b_, (e T }. (A.2)
Substituting (A.2) in (2.9b) and using the b.c. (2.9d) yields

2nen(z + h)
Qy !

a, = cosh [ =1,2,... (A.3)

3,
From (A.3) and the b.c. (2.9¢) we obtain (same as 3.3a)

" 2Q 2nngsinh 2nneh 2nn |? " 2nneh
—|—1| co
eQy Qy ? ’ &Ly

(same as 3.3b)

(A4)
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where C, (&) are the Fourier coefficients of (| 4]%),:

— 2mint

(4P, = £ {C@T +C.@T }: GOS0E). (A3
" (same as 3.4)

Substituting (A.3) and (A.4) in (A.2) and differentiating twice with respect to
yields:

— 2xwint

2rnint
_ 3B iGEe Y +C, Qe ]
(Plon z=0 ot 20 { Y9 th|:27'cn8h:| ‘

(A.6)

 2nneQ Q'
Thus from (A.5) and (A.6) follows the relation

© 2nint — 2mint
P10..lz=0 = I (1417, + 22 (I, —TI){C, (e +C_,e v } (A7)
where
-2 .2
I e 9 b n=1,2,3,.... (A8)

n = 2nneh |\’
20(1— 19 __,p| 208
2nne Q'y

It can be shown that I, — I'; < 0(e~?) for all n. On the other hand, C, (¢) are
Fourier coefficients. Thus there exists an N, such that

L 2mint — 2zint
> {C, Qe +C,(He v =6 (A.9)
n=N
and then
© 2wint — 2mint
> (L~ T){C,e7 +C_,e v }<00). (A.10)
n=N
Forn £ N:
I,—-T, 20, (A.11)
From (A.7), (A.10) and (A.11) we finally obtain the relation
?10,.02=0 = I} |412 + 0(e). (A.12)
From (A.8) one can show that
~2 .2
n=—2"9F 4y (A.13)
20(1- "
(@)
and thus
@10..lz=0 = T1A[Z + 0() (A.14)
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where

3—292ﬁz

_ghy
m(l (9')2>

Equations (A.14) and (A.15) are identical to those obtained for the case of
shallow water (see Djordjevic et al. 1978, Stiassnie 1983). Integrating (A.14) with
respect to t yields

=0 =T AP+ Q(&) + 0(e). (A.16)

r= (A.15)

P10,

In order to find Q we introduce a lateral boundary condition of zero averaged
(over 1) mass flow which is appropriate for an impervious beach, as follows:

K
nU = —2—22‘?]14[2 ~0 (A.17)

where U = ¢ ¢@,,_is the wave induced mean current velocity, and the bar indi-
cates averaging.
From Eqgs. (A.16), (A.15) and (A.17) we obtain:

g K& 4 92 B
Q@) =—eaF| 20k T T gh ] (A18)
@y
Integrating of Eq. (A.16) with respect to t yields
8“2 2
oio = — 1P &+ 0O+ 00,0, (A.19)
2e [1 - (Q’)Z]

Substituting Eq. (A.19) into (2.7d), and suppressing secular terms in t (which
grow monotonically and boundlessly) we obtain:

— e 2gKQ |A)?

©20(8) = 20k

(A.20)
(same as 3.5)

Averaging the two expressions for ¢, in (A.2) and in (A.16) and comparing the
results, yields
L, —gKQ
=—g 2 |APP T—. .
Q,(8) e |A] SOh (A.21)
Finally, substitution of (A.16), (A.18) and (A.20) into (2.9 a) gives Eq. (3.1). Substi-
tuting (A.21) in (A.2) gives (3.3).
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Appendix B: Solution of Egs. (4.3a, b) for constant depth

Input data: J,,J;, P; I=J,—J?

1 141 1/2
N e B
21\/?
C2=P-[1—<1—|--P—2—> } (B.2)
c=max (C;,C,); d=min(C,,C,) (B.3a, b)
2
a=2P; b=7(4—P) (B.3¢c,d)
)k2=1__a_b-c-d (B4)
a b
2 2
y=:——§;u/7ab~X' (B.5)
cd (y, k) is a Jacobian elliptic function of the argument y with modulus k.
a-b-(1—cd?
— B.6
‘ a—b-cd? (B-6)

| Dyl =/2/2; |Dol=+/J, — £ (B.7a, b)
I—158224+ (P —2J,) 7
22(J; —2) '

cos [2(arg D, — arg D,)] = (B.7¢)
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Abstract
An approximate analytical solution describing the shoaling of modulated wave-trains is

presented. This solution provides new information about the wave field evolution as well as about
the wave-induced mean current and set down.

Zusammenfassung

Eine angendherte analytische Losung wird gegeben, die das Brechen von modulierten
Wellenziigen beschreibt. Die Losung gibt neue Informationen iiber die Entwicklung des Wellen-
feldes wie auch iiber die mittlere Stromung und mittlere Hohendnderung, die von den Wellen
induziert wird.
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