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EXTREME VALUES OF BREAKER DIRECTION
AND LONGSHORE CURRENT

By Michael Stiassnie’ and Uri Kroszynski*

INTRODUCTION

Considering a straight shoreline and parallel bottom contours, the refraction
of a periodic wave is described by Snell’s law as
sin a L
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in which o = the angle between wave front and bottom contour; L = the
wave length; and subscript O refers to deep water conditions. According to
the linear theory, L is related to the local depth, 4, by
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Assuming conservation of wave energy flux between orthogonals, the variation
in wave height H (due to both refraction and shoaling) is described by
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Egs. 1, 2, and 3 may be found in almost any book on water waves, €.g.,
Le Méhauté (3) and we assume them valid, at least approximately, up to the
first breakerline.

The criterion selected for wave breaking is the usually adopted condition
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in which subindex b denotes breaking. It should be noted that Eq. 4 sets a
practical limit for H, before an orthogonal crossing singularity is encountered
along the rays. An examination of the numerical value in the right-hand side
of Eq. 4 can be found in Galvin (2). ’

Egs. 1-4 can be solved in order to provide the values H »» Ly, d,, and
o, for given deep water conditions H,, L, and a,. After doing that, an estimate
for the peak U of the longshore current distribution, for the more restrictive
case of a plane bed of slope s, is given by

] |
U= <28 d—) g'PHsin Qa,) ... Q)
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in which g = the gravitational acceleration. Eq. 5 was proposed by Balsillie
(1) following Longuet-Higgins (4).

While observing tables of numerical results for Egs. 1-5, the writers noticed
that extreme values for «, and U occurred consistently at «, values a little
higher than 60° and a little smaller than 60°, respectively, with almost no
dependence on the other two deep water parameters, H, and L,. It is the
aim of this note to confirm analytically the values of a, at which the previously
mentioned extreme conditions occur.

In the framework of linearized wave theory, using the classical wave breaking
criterion and longshore current formula, the following two extreme conditions
are analytically derived: (1) The maximum angle between the breakerline and
the shoreline occurs when the angle between wave fronts in deep water and
the shoreline is about 66°; and (2) maximum longshore current velocities are
obtained when the previously mentioned (deep water) angle is about 58°.

Maximum BREAKERLINE TO SHORELINE ANGLE

Elimination of H,, L,, and d »in Eqgs. 1-4, yields the following rather involved
expression for «, as dependent upon deep water parameters. Thus
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in which a, = sin a,; a, = sin a,; and 3 = (2w/0.8) Hy,/L,. The parameter
d is a measure of the wave steepness in deep water, which is assumed to
be small, i.e., 8 = 0 (1).

Eq. 6 indicates that small values of & imply small values of a »/a,. The
asymptotic expansion of Eq. 6 for small values of a,/ a, is found to yield

a,=2""a,(1 —ap)/" " [1— b3+ 0% ... ... ... ... (Ta)
in which b,=(1/30)27%° 2 - 3a(l—ad)'® ... @b)
Eq. 7a indicates that, to accuracy 0(3°/%), a » and consequently «, are propor-
tional to 8%/°.

In order to calculate the value of a, making a, a maximum (we denote this
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value with 4,), the derivative with respect to a, of Eq. 7a is equated to zero.
This results in

5 1/2 84/5
A, =|— 1+ +0(8%° ]
° (6) [ 30 x 3%/° x 2%/° )

—=0.9129 [1 4 0.00598** +0(3**)] . . .. ... ®)

Eq. 8 indicates an extremely weak dependence of A,upon 3, so that for almost
all practical purposes, the maximum value of a, is expected to appear at

ap=sin A, =sinT (0.9129) = 66° . . . ... ©)

The extreme value of a, itself is obtained by substituting Eq. 8 into Eq.
7 a, or when neglecting terms of 0(3°’%), Eq. 9 into Eq. 7a. The latter substitution
yields

Qe = SIN 7 (0.6643827%) L L L (10)
Maximum LonesHORE CurrenT (PLaNE Bep oF SiopE s)

Expanding Eq. 5 for small 3 and using Eq. 74, the following expression
for the peak velocity of the longshore current distribution is obtained

U= Cos(0.8)°22>° 28 ao(l —a3)'*8*° [1 + ,3*° +0@*7) . ... (lla)
in which C, = the wave celerity in deep water and

1
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In order to calculate the value of a, making U a maximum (we denote this
value with 4,), the derivative with respect to a, of Eq. 1la is equated to
zero. After several manipulations, one eventually obtains

5\'? 13 x 2°7°
Ao=<——> [1—(———7%8“/%0(88/5)
7 (30 x 7''7%).

=0.8452 [1 — 0.02098 “> + 0(3%*)] . . . o oo (12)

Although stronger than in Eq. 8, the dependence of 4, upon 3 is still weak.
The numerical value of a, corresponding to 4, is, for practical purposes

ap=sin"'(4d,)=sin"  (0.8452) =58 . .. ... 13)
Substituting this result in expression Eq. 11a, one obtains

U, =19.985C3%° . . . .. 14
x 0
Remarks AND CONCLUSION

Since the definition of & includes the numerical value 0.8 selected for the
breaking criterion, Eq. 4, the results hold for any other such value as long
as & remains small. Only in the expression for the peak velocity, Eq. lla,
the value appears additionally, as a 3/2 power factor influencing the numerical
coefficient in Eq. 14. In fact, the tables of numerical results that inspired this
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note used the more general breaking criterion known as Miche’s formula (see
Ref. 2, p. 419). Furthermore, the numerically observed trend of the extreme
values indicates the validity of our asymptotic results, even for values of §
as large as 0.75, which covers almost all practical cases.

The analytical derivation of both extreme conditions, although unpretentious
in itself, yields a theoretical background for a perhaps known fact. The present
results confirm the trends observed in tables of breaker parameters and in physical
models in use at the Coastal and Marine Engineering Research Institute. The
results may be helpful for a quick estimation of extreme longshore current
and sediment transport conditions as well as for the design of tests in physical
models where those conditions are relevant.
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